Các bn giúp mink vs nha
Cho E = 1/3 + 2/3^2 + 3/3^3 + ... + 100/3^100
Chứng tỏ rằng: A < 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2!= 1- 1/2
1/3! = 1/2.3= 1/2 - 1/3
1/4! = 1/2.3.4< 1/3.4 =1/3 -1/4
....
1/100! = 1/...99.100 <1/99-1/100
cộng vế với vế ta được điều phải chứng minh
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)
B = 31 + 32 + 33 + .... + 399 + 3100
3B = 3(31 + 32 + 33 + ..... + 399 + 3100)
3B = 32 + 33 + 34 +...... + 3100 + 3101
3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)
2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)
2B = 0 + 0 + 0 + ..... +0 + 3101 - 1
2B = 3101 - 1
B = (3101 - 1) : 2
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này:))
\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow4E< 3\)
\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)
Bài 1:
Ta có: \(3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^5.120+...+3^{96}.120\)
\(=120.\left(1+3^5+.....+3^{96}\right)\)
\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)
A=1/2²+1/3²+1/4²+1/5²+...+1/2022²
Dễ thấy A > 1/2.3+1/3.4+1/4.5+1/5.6+...+1/2022.2023 = B
Và A < 1/1.2+1/2.3+1/3.4.5+1/4.5+...+1/2021.2022 = C
Ta có B = 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2022 - 1/2023
B = 1/2 - 1/2023 > 1/2
C = 1- 1/2 + 1/2 - 1/3 +.... + 1/2021 - 1/2022
= 1-1/2022 < 1
Vậy 1 > C > A > B > 1/2
Hay 1 >A>1/2
Suy ra A không phải là số tự nhiên.
Bạn muốn dạy kèm hoặc giải đáp mọi thắc mắc liên quan tới toán thì có thể liên hệ nhé
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0