cho a,b,c>0 cmr a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng engel:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cách khác :
Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(\dfrac{a^2}{a+b}+\dfrac{a+b}{4}\ge2\sqrt{\dfrac{a^2\left(a+b\right)}{4\left(a+b\right)}}=a\)
Tương tự: \(\dfrac{b^2}{b+c}+\dfrac{b+c}{4}\ge b;\dfrac{c^2}{c+a}+\dfrac{c+a}{4}\ge c\)
Cộng theo vế ta được:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)(đpcm)
Áp dụng bđt Svacxo có
\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}=a+b+c\)
Dấu "=" tại a =b = c