giải pt : (x+1).(x+2).(x+3).(x+4) = 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
đặt \(x^2+5x+5=t\)
\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=a\)ta có:
\(a\left(a+2\right)-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-25\)
\(=\left(a-4\right)\left(a+6\right)\)
Thay trở lại ta được:
\(\left(x^2+5x\right)\left(x^2+5x+10\right)\)
a) ta có :(x-1)(x-2)(x+3)(x+4)=24
<=>[(x-1)(x+3)].[(x-2)(x+4)] =24
<=>(x^2 +2x -3)(x^2+2x -8)=24
đặt x^2 +2x -3 =a => (x^2 +2x -3)(x^2 +2x-8)=a(a-5) =24
<=>a^2 -5a-24=0
<=>(a-8)(a+3)=0 <=> a-8=0 hoặc a+3=0 <=>a=8 hoặc a=-3
+) với a=8 => x^2 +2x-3=8 <=>x^2 +2x-11=0<=>(x+1)^2 -10=0 (vô nghiệm) vì (x+1)^2 >=0
+) với a=-3=>x^2 +2x-3=-3<=>x^2 +2x=0<=>x.(x+2)=0 <=> x=0 hoặc x+2=0 <=>x=0 hoặc x=-2
Vậy tập nghiệm của pt là S={0;-2}
a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)
Vậy tập nghiệm của phương trình là \(S=ℝ\)
b) \(\left(3x+4\right)^2=4\left(x+3\right)\)
\(\Leftrightarrow9x^2+24x+16=4x+12\)
\(\Leftrightarrow9x^2+20x+4=0\)
\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)
c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)
d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)
Đặt \(t=x^2+3x+2\), ta có :
\(t\left(t+1\right)-2=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)
e)Đề bài sai ! Mik sửa :
\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
Đặt \(t=x^2-5x\), ta có :
\(t^2+10t-24=0\)
\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)
f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)
Đặt \(t=x^2+x+1\), ta có :
\(t\left(t+1\right)-12=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)
g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(t=x^2+x\), ta có :
\(t\left(t-2\right)-24=0\)
\(\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)
h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\), ta có :
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)
1) \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x}{\left(x+1\right)\left(x-1\right)}+\frac{3}{\left(x-3\right)\left(x+1\right)}=\frac{x}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow x\left(x-3\right)+3\left(x-1\right)=x\left(x+1\right)\)
\(\Leftrightarrow x^2-3=x^2+x\)
\(\Leftrightarrow-3=x\)
\(\Leftrightarrow x=-3\)
Vậy: nghiệm phương trình là -3
\(3,\text{ }\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Rightarrow\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=0-16\)
\(\Rightarrow\text{ Có lẻ thừa số âm }\)
Mà \(\left(x+8\right)>\left(x+6\right)>\left(x+4\right)>\left(x+2\right)\)
Ta có hai trường hợp :
\(TH\text{ }1\text{ :}\) Có một thừa số âm
\(\Rightarrow\text{ }\left(x+2\right)< 0\)
\(\Rightarrow\text{ }x< -2\)
\(TH\text{ }2\text{ : }\) Có 3 thừa số âm
\(\Rightarrow\text{ }\hept{\begin{cases}\left(x+2\right)< 0\\\left(x+4\right)< 0\\\left(x+6\right)< 0\end{cases}}\) \(\Rightarrow\text{ }\left(x+2\right)< 0\text{ }\Rightarrow\text{ }x< -2\)
Si thì thôi nha ! Mong bạn thông cảm !
a,ĐK: x\(\ge\)1
⇔\(\sqrt{x-1-2\sqrt{x-1}+1}\)=\(\sqrt{2}\)
⇔\(\sqrt{\left(\sqrt{x-1}-1\right)^2}\)=\(\sqrt{2}\)
⇔\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{2}\)
TH1:\(\sqrt{x-1}\)-1≥0⇒\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{x-1}\)-1 bn tự giải ra nha
TH2:\(\sqrt{x-1}\)-1<0⇒\(\left|\sqrt{x-1}-1\right|\)=1-\(\sqrt{x-1}\) bn tự lm nha
( x+2)(x+5)(x+4)(x+3) = 24
<=> (x2 + 5x + 2x + 10)( x2 + 3x+4x+12 ) = 24
<=> ( x2 +7x+10)(x2+7x+12) = 24
Đặt x2 + 7x = t
Thay t vào phương trình , ta có
( t + 10)(t+12) = 24
<=> t2 + 12t + 10t + 120 - 24 = 0
<=> t2 + 22t + 96 = 0
<=> t2 + 6t + 16t + 96 = 0
<=> t( t+6)+16(t+6) = 0
<=> (t+16)(t+6) = 0
=> t+ 16 = 0 => t= -16
hoặc t+6=0 => t= - 6
rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6
x là tất cả các giá trị tìm được
x = 0 nha bạn