chứng tỏ rằng đa thức sau có ít nhất 4 nghiệm biết rằng
f(x+1)(x2 - 1) = f(x)(x2 + 9)
nhanh dùm nếu có thể
nhanh nhất sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
xf(x+1)−(x+2)f(x)=0xf(x+1)−(x+2)f(x)=0
Thay x=0:0f(1)−2f(0)=0x=0:0f(1)−2f(0)=0
⇒f(0)=0(1)⇒f(0)=0(1)
Thay x=−2x=−2: −2f(−1)−0.f(−2)=0 Ta có: −2f(−1)−0.f(−2)=0
⇒f(−1)=0(2)⇒f(−1)=0(2)
Từ (1);(2)(1);(2) suy ra x=0;x=−1x=0;x=−1 là nghiệm của đa thức f(x)f(x)
=> Đa thức f(x)f(x) có ít nhất 2 nghiệm
=>Đpcm
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)
+) Xét x = 0 ta có :
0 . P(0+2) = (0^2-9 ) . P(0)
0 = -9 . P(0)
mà -9 khác 0 => P(0) = 0 => 0 là một nghiệm của P(x)
+) Xét x = 3 ta có :
3 . P(3+2) = ( 3^2 - 9 ) . P(3)
3 . P(5) = 0 . P(3)
mà 3 khác 0 => P(5) = 0 => 5 là một nghiệm của P(x)
+) Xét x = -3 ta có :
-3 . P(-3+2) = [ (-3)^2 - 9 ] . P(-3)
-3 . P(-1) = 0 . P(-3)
mà -3 khác 0 => P(-1) = 0 => -1 là một nghiệm của P(x)
Từ 3 điều trên => đpcm
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
Khi x=4 thì 0*f(5)=9*f(4)
=>f(4)=0
=>x=4 là nghiệm
Khi x=-5 thì f(-5)*0=(-9)*f(-4)
=>f(-4)=0
=>x=-4 là nghiệm