Xác định n \(\varepsilon\) N đẻ phân số sau tối giản: n+8/2n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(\text{ƯCLN( n+8 ; 2n+5 )}\) \(=d\left(d\in\text{N*}\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{n + 8 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{2n + 16 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\text{2n + 16 – (2n-5) ⋮ d}\)
\(\Rightarrow\text{21 ⋮ d }\)
\(\Rightarrow\) \(\text{d }\in\left\{\text{1 ; 3 ; 7}\right\}\)
Nếu \(\text{d = 3}\)
\(\Rightarrow\) \(\text{n+8 ⋮ 3}\)
\(\Rightarrow\) \(\text{n + 8 = 3k ( k ∈ N*)}\)
\(\Rightarrow\) \(\text{n = 3k – 8}\)
\(\Rightarrow\) \(\text{2n – 5 = 2(3k – 8) – 5 = 6k – 16 – 5 = 6k – 21 = 3(2k – 7) ⋮ 3}\)
Vậy n khác \(\text{2k – 7}\) thì \(\text{n+8/2n -5}\) tối giản
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(ƯCLN\)(n+8 và 2n-5) là d
\(\Rightarrow\int^{n+8}_{2n-5}\) chia hết cho d
\(\Rightarrow\int^{2\left(n+8\right)}_{1\left(2n-5\right)}\) chia hết cho d
\(\Rightarrow\int^{2n+16}_{2n-5}\) chia hết cho d
\(\Rightarrow2n+16-\left(2n-5\right)\)chia hết cho d
\(\Rightarrow2n+16-2n+5\) chia hết cho d
\(\Rightarrow11\) chai hết cho d \(\in\) \(ƯCLN\)\(\left(11\right)=\left\{+-11,+-1\right\}\)
Rồi bạn lập bảng tính như thường, chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
mik thì trúng đề thì có con này, mik ko bt làm những thầy cô giáo mik bảo có vô số n thuộc n để p/s tối giản
![](https://rs.olm.vn/images/avt/0.png?1311)
nếu n=1 thì n+8=9 và 2.n-5=-3 => phân số này không tối giản (loại)
nếu n=2 thì n+8=10 và 2.n-5=-1 = phân số này không tối giản (loại)
nếu n=3 thì n+8=11 và 2.n-5=1 = phân số này không tối giản (loại)
.................. cứ thử như vậy
mà hình như không có số nào hết đó (hên sui !!!)
![](https://rs.olm.vn/images/avt/0.png?1311)