K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

22 tháng 12 2016

trên tia đối của MN lấy I sao cho MN=NI

xét tam giác ANM=tam giác CNI(c.g.c)

nên góc MAN=góc NCI(2 góc t/ư); AM=CI=MB(cạnh t/ư)

nên MAC=ACI nên AM //CI suy ra BM//CI

Xét tam giác BMC=tam giác ICM(c.g.c)

suy ra MI=BC(hai cạch t/ư);góc MCB=góc IMC(hai góc t/ư)

suy ra MI//BC và MN=1/2BC

suy ra MN//BC

 

22 tháng 12 2016

vì M là TĐ của AB,N là tđ của ac nên:

→MN là đg trung bình của tam giác AbC

→MN //BC,MN=1/2 BC

theo mh nghĩ là vậy.sai thì đừng trách nhé!

11 tháng 11 2019

Bạn thông cảm, mk ko bít vẽ hình trên olm

Xét tam giác ABC có M,P lần lượt là trung điểm của BC,AC (gt)

=> MP là đường trung bình của tam giác ABC

=> MP // AB mà N thuộc AB

=> MP // NA (1)

Tương tự MN //AP (2)

Từ 1, 2 =. tứ giác MNAP là hình bình hành

11 tháng 11 2019

A B C N P M

21 tháng 5 2018

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔABC có

\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)

Do đó: MN//BC

b: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

BN=CM

Do đó: ΔABN=ΔACM

a)M,N là trung điểm AB,AC

\(\Rightarrow MN\) là đường trung bình

\(\Rightarrow MN//BC\)

b) M là trung điểm \(AB\Rightarrow MB=\dfrac{AB}{2}màAB=AC\)

N_____\(AC\Rightarrow NC=\dfrac{AC}{2}\Rightarrow MB=NC\)         

\(BNC=CMB\left(C-g-c\right)\Rightarrow CM=BN\)

M N b c A

                       

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

Tam giác $ABC$ cân tại $A$ nên:

$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$

$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$

$\Rightarrow \triangle AMN$ cân tại $A$

$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$

Do đó: $\widehat{ABC}=\widehat{AMN}$

$\Rightarrow MN\parallel BC$

Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$

Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)

$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$

$\Rightarrow BM\parallel CP$

$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)

Xét tam giác $BMC$ và $PCM$ có:

$MC$ chung

$\widehat{BMC}=\widehat{PCM}$ (cmt)

$\widehat{BCM}=\widehat{PMC}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)

$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$

 

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Hình vẽ:

undefined

20 tháng 11 2017

a) dùng đường trung bình của tam giác

b) Để BCMN là hình thang cân thì \(\widehat{A}=\widehat{B}\)

=> \(\Delta ABC\)cân tại A

Mình làm tắt, bạn tự trình bày đầy đủ nhé

20 tháng 11 2017

a) dùng đường trung bình của tam giác

b) Để BCMN là hình thang cân thì ^A=^B

=> ΔABC cân tại A

7 tháng 8 2016

a) Xét tam giác AMN và tam giác CMD có:

       MN = MD ( M là trung điểm của ND)

       Góc NMA = góc DMC ( đối đỉnh)

       MA = MC ( M là trung điểm của AC )

   => tam giác AMN  = tam giác CMD ( c-g-c)

   => Góc NAM = góc DCM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong => AN//DC=> AB//DC ( vì A, N, B là 3 điểm tạo nên cùng 1 đường thẳng).

b) Ta có: AN = DC ( tam giác AMN = tam giác CMD)

       Mà  AN = NB ( N là trung điểm của AB)

        => DC = NB

    Xét tam giác NCB và tam giác CND có:

        NC là cạnh chung

        Góc BNC = góc DCN( so le trong, NB//DC)

        NB = DC (cmt) 

    => tam giác NCB =  tam giác CND ( c-g-c)

    => Góc BCN = góc DNC ( 2 góc tương ứng)

  Mà 2 góc này ở vị trí so le trong => ND//BC=> ND//BE

c) Ta có: ND//BE(cmt)=> NM//BC=> BCMN là hình thang (1)

    Ta có: AB = AC (gt)

        => Góc ABC = góc ACB ( quan hệ giữa góc và cạnh đối diện)

        => Góc NBC = góc MCB (2)

   Từ (1) và (2) => BCMN là hình thang cân

Xét tam giác AMD và tam giác CMN có:

    MA = MC ( M là trung điểm của cạnh AC)

    Góc DMA  = góc NMC ( đối đỉnh)

    MN = MD ( M là trung điểm của cạnh ND)

  => Tam giác AMD = tam giác CMN (c-g-c)

  => Góc DAM = góc NCM ( 2 góc tương ứng)

 Mà 2 góc này ở vị trí so le trong => AE//NC => ANCE là hình thang

d) BD>NE