K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

Answer:

\(\frac{x^2-x-2}{x^2-x+2}\)\(\inℤ\)

\(\Rightarrow\frac{x^2-x+2-4}{x^2-x+2}\inℤ\)

\(\Rightarrow1-\frac{4}{x^2-x+2}\inℤ\)

\(\Rightarrow\frac{4}{x^2-x+2}\inℤ\)

\(x\inℤ;\frac{4}{x^2-x+2}\inℤ\)

\(\Rightarrow4⋮\left(x^2-x+2\right)\RightarrowƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

undefined

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.

2 tháng 10 2017

hổng rõ đề bài ha

2 tháng 10 2017

troll nhau ak mũ âm thì làm gì nó là số nguyên

25 tháng 8 2021

Ta có \(A=\dfrac{4x-3}{x+2}=\dfrac{4x+8-11}{x+2}=4-\dfrac{11}{x+2}\)

Để \(A\) nguyên thì \(11⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\\x+2=11\\x+2=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=9\\x=-13\end{matrix}\right.\)

Vậy tất cả các x thỏa ycbt là x=-1;x=-3;x=9 hoặc x=-13

Để A là số nguyên thì \(4x-3⋮x+2\)

\(\Leftrightarrow-11⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{-1;-3;9;-13\right\}\)