Cho S= 999991999- 5555571997
Chứng minh S chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=9999931999−5555571997
A=9999931998.999993−5555571996.555557
A=(9999932)999.999993 − (5555572)998.555557
A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)
A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)
A= \(\overline{\left(...0\right)}\)
Vì A có tận cùng là 0 nên \(A⋮5\)
Số số hạng của dãy S là :(2004-1):1+1=2004
Ta chia 2004 số hạng thành 501 nhóm mỗi nhóm 4 số và đătj thừa số chung như sau:
(5+5^2+5^3+5^4)+........+(5^2001+5^2002+5^2003+5^2004)
=> (5+5^2+5^3+5^4)+........+5^2001*(5+5^2+5^3+5^4)
=>780+..........+5^2001*780
=780*(1+.........+5^2001)
Vì 780 chia hết cho 65
vậy S chia hết cho 65
mik cx ko bt câu này
mik cx dg định đăng câu này
hok tốt
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
\(S=\left(5+5^3\right)+5\left(5+5^3\right)+............+5^{2001}\left(5+5^3\right)\)
\(\Rightarrow S=130+5.130+....+5^{2001}.130\)
\(\Rightarrow S=65\left(2+2.5+.....+2.5^{2001}\right)\)
=>s chia hết cho 65
Vậy S chia hết cho 65