K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Cạnh AB=AC thì là tam giác cân tại A chứ tam giác gì bạn. :)))

29 tháng 3 2020

Xét tam giác ABC có:

AB = AC = 13 cm

=> Tam giác ABC là tam giác cân

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

22 tháng 7 2017

Vì tam giác ABC cân tại A nên AE là đường cao đồng thời là đường trung tuyến

=> E là trung điểm BC => EB = EC = 5

Xét ABE vuông tại E có:

Mặt khác:

Xét ABH vuông tại H có:

Đáp án cần chọn là: A

21 tháng 4 2020

a) Ta có : AB2AB2 = 5252 = 25 

AC2AC2 = 122122= 144 

⇒⇒ AB2+AC2AB2+AC2 = 25 +144 = 169    *1* 

Mà BC2BC2 = 132132 = 169    *2* 

Từ *1* và *2* suy ra AB2+AC2AB2+AC2 = BC2BC2 

Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông tại A. 

b) Theo đề bài ta có : AB < AC < BC (  5 < 12 < 13 ) nên 

⇒⇒ ˆCC^ < ˆBB^ < ˆAA^ ( quan hệ giữa góc và cạnh trong một tam giác

21 tháng 4 2020

A B C

a, có \(AB^2=5^2=25\)

\(AC^2=12^2=144\)

\(\Rightarrow AB^2+AC^2=25+144=169\left(1\right)\)

\(BC^2=13^2=169^2\left(2\right)\)

Từ 1 và 2 \(\Rightarrow AB^2+AC^2=BC^2\)

Dựa vào định lí  py - ta - go đảo ta có \(\Delta ABC\)là tam giác vuông tại A

b, như đề bài ta có :

\(AB< AC< BC\)hay \(5< 12< 13\)

\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(Dựa vào quan hệ giữa góc và cạnh trong 1 tam giác )

Chúc bạn học tốt !

NV
27 tháng 7 2021

Đề bài thiếu, tam giác ABC là tam giác gì nhỉ em?

27 tháng 7 2021

tam giác vuông thầy ạ

 

31 tháng 8 2017

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)

NV
27 tháng 7 2021

a.

Trong tam giác vuông ABC:

\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)

\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)

\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)

\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)