Cho biết a.b.c khác 0 thỏa mãna
a^2=bc CMR: a+b/a-b=c+a/c-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}\Leftrightarrow bc=ab\Rightarrow a=c\)(1)
Tương tựi ta cũng có : \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)(2)
Từ (1);(2) \(\Rightarrow a=b=c\)Thay vào M ta được :\(M=\frac{a.a+a.a+a.a}{a^2+b^2+c^2}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=b=c=a\)
\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)
Ta có :
a^xyz=(a^x)^yz=(bc)^yz
=b^yz.c^yz
=(b^y)^z.(c^z)^y
=(ca)^z.(ab)^y
=c^z.a^z.a^y.b^y
=(bc).a^z.a^y.(ca)
=a^2.a^y.a^z.(bc)
=a^2.a^y.a^z.a^x
=a^(x+y+z+2)
=>xyz=x+y+z+2
Có -a=b+c
<=> 0=a+b+c
Có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)}\)
=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2.\frac{a+b+c}{abc}}\)
=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2.\frac{0}{abc}}\)
=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
= \(\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) là số hữu tỉ (vì a,b,c là số hữu tỉ)
=> \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là số hữu tỉ