Cho a^2+b^2+c^2 =1. tìm gtln của ab+bc+2ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).
Vậy..
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
Xét \(F+1=ab+bc+2ac+a^2+b^2+c^2\)
\(\Leftrightarrow F+1=\left(a+c\right)^2+b\left(a+c\right)+b^2\)
\(\Leftrightarrow\left(a+c\right)^2+b\left(a+c\right)+b^2-F-1=0\left(6\right)\)
Ta coi (6) là pt bậc 2 ẩn \(t=\left(a+c\right)\)
Để (6) có nghiệm thì
\(\Delta=b^2-4.1.\left(b^2-F-1\right)\ge0\)
\(\Rightarrow F\ge-1+\frac{3}{4}b^2\ge-1\)
Dấu = khi b=0 và \(a=-c=\pm\frac{\sqrt{2}}{2}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)