cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\)chung minh:
\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất tỉ lệ thức ta được:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)
Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)
Câu b tương tự
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{a+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{5a^2}{5b^2}=\frac{2c^2}{2d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a^2}{b^2}=\frac{5a^2}{5b^2}=\frac{2c^2}{2d^2}=\frac{5a^2+2c^2}{5b^2+2d^2}=\frac{5a^2-2c^2}{5b^2-2d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Theo TCDTSBN:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4c}{4d}=\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
k nhé!