Cho ∆𝐴𝐵𝐶 cân tại 𝐴, 𝐷 là trung điểm đoạn 𝐴𝐵. Qua 𝐷 đường thẳng song song với 𝐵𝐶 cắt 𝐴𝐶 tại 𝐸 và đường thẳng song song với 𝐴𝐶 cắt 𝐵𝐶 tại 𝐹. a) Chứng minh ∆𝐴𝐷𝐸;∆𝐷𝐵𝐹 là tam giác cân b) Chứng minh ∆𝐷𝐴𝐹 là tam giác cân c) Chứng minh 𝐴𝐹 ⊥ 𝐷𝐸 d) Chứng minh 𝐹 là trung điểm 𝐵𝐶.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do AD là đường phân giác của ∠BAC
⇒ BD/CD = AB/AC = 9/12 = 3/4
b) Xét hai tam giác vuông: ∆ABC và ∆EDC có:
∠C chung
⇒ ∆ABC ∽ ∆EDC (g-g)
a: BD/CD=AB/AC=3/4
b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
a: Xet ΔABC và ΔEBA có
góc BAC=góc BEA
góc B chung
=>ΔABC đồng dạng với ΔEBA
b: ΔABC vuông tại A có AE vuông góc BC
nên AB^2=BE*BC
c: BF là phân giác
=>AF/AB=CF/BC
=>AF/3=FC/5=4/8=1/2
=>AF=1,5cm
a: Xét ΔBAC có
N là trung điểm của AB
NI//BC
Do đó: I là trung điểm của AC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔADH có \(\widehat{DAH}=\widehat{DHA}\)
nên ΔADH cân tại D
c: Xét ΔABC có
H là trung điểm của BC
HD//AC
DO đó: D là trung điểm của AB
Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng
a: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Xét ΔADE có AD=AE
nên ΔADE cân tại A
b: Xét ΔABC có
D là trung điểm của AB
DF//AC
Do đó: F là trung điểm của BC
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình
=>DF=AE
mà AE=AD
nên DF=AD
=>ΔADF cân tại D
c: Xét tứ giác ADFE có
DF//AE
DF=AE
Do đó: ADFE là hình bình hành
mà AD=AE
nên ADFE là hình thoi
=>AF⊥DE
- Toàn là kiến thức lớp 8 anh/chị ơi :)