Tính tổng:
S=3+3/2+3/22+.............+3/29
ai đúng mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3/22 x 3/11 x 22
Cách 1
3/22 x 3/11 x 22 = 9/242 x 22
= 198/242
= 9/11
Cách 2
3/22 x 3/11 x 22 = 3 x 3 x 22/22 x 11 x 1
= 9/11
b,( 1/2 + 1/3) x 2/5
Cách 1
( 1/2 + 1/3 ) x 2/5 = 5/6 x 2/5
= 10/30
= 1/3
Cách 2
( 1/2 +1/3) x 2/5 = 1/2 x 2/5 + 1/3 x 2/5
= 2/10 + 2/15
= 1/5 + 2/15
= 3/15 + 2/15
= 5/15
= 1/3
c, 3/5 x 17/21 + 17/21 x 2/5
Cách 1
3/5 x 17/21 + 17/21 x 2/5 = 51/105 + 34/105
= 85/105
= 17/21
Cách 2
3/5 x 17/21 + 17/21 x 2/5 = 17/21 x (3/5 +2/5)
= 17/21 x 5/5
= 17/21 x 1
= 17/21
HỌC TỐT ( k mk nhé)
Sao Cũng Được
Trả lời
13
Đánh dấu
13/06/2015 lúc 12:46
Cho : S = 30 + 32 + 34 + 36 + ... + 32002
a) Tính S
b) Chứng minh S chia hết cho 7
Được cập nhật 09/10/2017 lúc 18:34
Toán lớp 6
thien ty tfboys 13/06/2015 lúc 13:06
Báo cáo sai phạm
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Đúng 23 Sai 0
bui duc anh 04/04/2016 lúc 21:44
Báo cáo sai phạm
S= 3^0 +3^2 +3^4 +....+ 3^2002
9S= 3^4 +3^6+.......+3^2004
9S-S=3^2004-1
8S=3^2004-1
S=3^2004-1/8
Đúng 8 Sai 0
thien ty tfboys 13/06/2015 lúc 13:05
Báo cáo sai phạm
S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
Đúng 6 Sai 0
oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
Báo cáo sai phạm
a)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
\(S\cdot\frac{1}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(S\cdot\frac{2}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(S\cdot\frac{2}{3}-S\cdot\frac{1}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}-1-\frac{1}{2}-...-\frac{1}{2^9}\)
\(S\cdot\frac{1}{3}=2-\frac{1}{2^9}\)
\(S=\left(2-\frac{1}{2^9}\right):\frac{1}{3}\)
\(S=\left(2-\frac{1}{2^9}\right)\cdot3\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{6\cdot2^9-3}{2^9}\)
\(S=1+3+3^2+3^3+...+3^{2014}\)
\(3S=3+3^2+3^3+3^4+...+3^{2015}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)
\(2S=3^{2015}-1\)
\(S=\frac{3^{2015}-1}{2}\)
S=2+4+6+...+98+100
S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)
S=1+2+3+4+...+2016+2017
S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)
1.Số lượng số của S= (2017-1)+1=2017 số
tổng=(2016+1).(2016:2)+2017=2 035 153
2.Số lượng số của S=(100-2):2+1=50 số
tổng=(100+2).(50:2)=2 550