Tìm nghiệm của đa thức B(x)= 4xX3-9xX
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
Thay x=2, ta có
P(x)=(2+1)(2a+6)=0
=> 2a+6=0
=>2a=-6
a=-3
b) Xét x+1=0
=>x=-1
Vậy nghiệm còn lại là -1
a) P(2)=(2+1)(2a-6)=0
\(\Leftrightarrow6\left(a-3\right)=0\Leftrightarrow a=3\)3
Vậy a=3 thì đa thức có nghiệm bằng 2
b) \(\left(x+1\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy nghiệm còn lại của đa thức là x=-1
Ta có
P = 4 x 2 + x + 1 + 2 x − 1 − 2 x 2 + 4 x x 3 − 1 = 2 x − 2 ( x − 1 ) ( x 2 + x + 1 ) = 2 x 2 + x + 1
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
a.
\(x=2\Rightarrow N\left(2\right)=2^2-9=4-9=-5\)
b.
\(N\left(x\right)=0\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
xX là biến hả
phải tìm x rồi giải nha bạN