K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

Ta có: a2 +a+1=(a2 +2a1/2+1/4 )+ 3/4 =(a+1/2)2 +3/4 >0

 Tương tự: a2 -a+1=( a-1/2 )2 +3/4 >0

Vậy suy ra điều cần cm

Ta có :a ²+a+1=(a ²+a+1/4)+3/4=(a+1/2) ²+3/4

          a ²-a+1=(a ²-a+1/4)+3/4=(a-1/2) ²+3/4

Vì (a-1/2) ² ≥  0;(a-1/2)²≥  0 với mọi a nên suy ra điều phải chứng minh

23 tháng 3 2020

\(A=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\)\(=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

\(\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}+\frac{9}{2}.\frac{a^2+1}{2a}\)

\(\ge2.\sqrt{\frac{1}{4}}+\frac{9}{2}.1=1+\frac{9}{2}=\frac{11}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(x=1\)

22 tháng 3 2021

1) Trước hết ta sẽ chứng minh BĐT với 2 số

Với x,y,z,t > 0 ta luôn có: \(\frac{x^2}{y}+\frac{z^2}{t}\ge\frac{\left(x+z\right)^2}{y+t}\)

BĐT cần chứng minh tương đương:

\(BĐT\Leftrightarrow\frac{x^2t+z^2y}{yt}\ge\frac{\left(x+z\right)^2}{y+t}\Leftrightarrow\left(x^2t+z^2y\right)\left(y+t\right)\ge yt\left(x+z\right)^2\)

(Biến đổi tương đương)

Khi bất đẳng thức trên đúng ta sẽ CM như sau:

\(\frac{a^2}{\alpha}+\frac{b^2}{\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b\right)^2}{\alpha+\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b+c\right)^2}{\alpha+\beta+\gamma}\)

Dấu "=" xảy ra khi: \(\frac{a}{\alpha}=\frac{b}{\beta}=\frac{c}{\gamma}\)

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

22 tháng 7 2021

đây nhé

22 tháng 7 2021

Ta có a(a + 1) + 1  = a2 + a + 1 = \(a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm) 

24 tháng 11 2019

Bạn ơi mình nói ngắn gọn thôi 

Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án

NV
24 tháng 11 2019

\(a+b+c+2=abc\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)