K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

gfvfvfvfvfvfvfv555

30 tháng 5 2022

loading...

 

gọi $J$ là giao điểm của $DE,AC$, ta có $BCDJ $là hình thoi nên $BC\parallel JD$, $JA=AC=2CF\Rightarrow 3CF=JF$, theo Thales ta có \(\dfrac{BC}{EJ}=\dfrac{CF}{JF}=\dfrac{1}{3}\Rightarrow JE=3BC\), mà $JD=BC$ nên suy ra $DE=2BC$, hay $EG=DG=BC$, dẫn đến $BCEG,BCGD$ là hình bình hành, suy ra $H$ là trung điểm $CD,I$ là trung điểm $CG$, theo tính chất đường trung bình ta có \(IH=\dfrac{1}{2}DG=\dfrac{1}{4}DE\)

5 tháng 5

c) Ta có: Góc A1= Góc A2

=>ME>AE

mà AE=ED (c.m.t)

=>ME>ED (d.p.c.m)

2 tháng 5 2023

loading...  Thông cảm câu c không biết làm

a: Xét ΔBAH và ΔBDH có

BA=BD

AH=DH

BH chung

=>ΔBAH=ΔBDH

b: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE
=>DA=DE

 

a: Xét ΔCAB có

E,D lần lượt là trung điểm của CA,CB

=>ED là đường trung bình của ΔCAB

=>ED//AB và \(ED=\dfrac{AB}{2}\)

Ta có: ED//AB

AB\(\perp\)AC

Do đó: ED\(\perp\)AC tại E

=>CA\(\perp\)FD tại E

Xét ΔCFD vuông tại C có CE là đường cao

nên \(FE\cdot FD=CF^2\left(1\right)\)

Xét ΔCFB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác AHCB có

\(\widehat{CHB}=\widehat{CAB}=90^0\)

=>AHCB là tứ giác nội tiếp đường tròn đường kính BC

=>\(\widehat{HCA}=\widehat{HBA}\)

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔCHB vuông tại H và ΔFCB vuông tại C có

\(\widehat{CBH}\) chung

Do đó: ΔCHB đồng dạng với ΔFCB

=>\(\dfrac{HB}{CB}=\dfrac{HC}{FC}\)

=>\(\dfrac{HB}{HC}=\dfrac{CB}{FC}\left(1\right)\)

Xét ΔABC vuông tại A và ΔECF vuông tại E có

\(\widehat{ACB}=\widehat{EFC}\left(=90^0-\widehat{CDF}\right)\)

Do đó: ΔABC đồng dạng với ΔECF

=>\(\dfrac{AB}{CE}=\dfrac{BC}{CF}\)(2)

Từ (1) và (2) suy ra \(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

Xét ΔABH và ΔECH có

\(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

\(\widehat{HBA}=\widehat{HCE}\)

Do đó: ΔABH đồng dạng với ΔECH

25 tháng 7 2023

Ai giúp em với ạ

25 tháng 7 2023

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.

29 tháng 9 2016

D E A B C M F K S O Q

a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.

b/ Dễ thấy.

c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE =>  AECM là hình thang

d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành

e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)

Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM

=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)

Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ

=> góc AFB + góc DFB = góc AFD = 90 độ