cho đa thức f(x)=ax^3+bx^2+cx+d/3 với mọi x(a,b,c,d) \(\in\) z.c minh 2a-3b+4c-5d/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5
=> 0+0+0+d chia hết cho 5 => d chia hết 5
ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5
=> a+b+c+d chia hết 5
Mà d chia hết 5 => a+b+c chia hết 5 (1)
ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5
=> -a+b-c+d chia hết 5
Mà d chia hết 5 => -a+b-c chia hết 5 (2)
Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5
=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5
Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5
=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5 (3)
ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5
=> 8a+4b+2c+d chia hết 5
Mà b,d chia hết 5 => 8a+2c chia hết 5 (4)
Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5
=> c chia hết 5
Vậy...
Đúng thì k nha mina !!
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5