K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

vì x^2 >hoặc= 0 (với mọi giá trị của x)

Suy ra x^2-3x+12 > 0 (với mọi x)

Suy ra x^2-3x+12 khác o

Suy ra x^2-3x+12 vô nghiệm

Tham khảo:x^2-5x+20 
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20 
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4 
=x(x-2/5)-2/5(x-2/5)+55/4 
=(x-2/5)(x-2/5)+55/4 
=(x-2/5)^2+55/4 
Ta có: (x-2/5)^2>=0 Với x thuộc R 
(x-2/5)^2+55/4>=55/4>0 
=>Đa thức không có nghiệm

6 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm 

8 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)

\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

=> Phương trình luôn vô nghiệm

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

10 tháng 8 2023

cảm ơn bạn

 

28 tháng 4 2016

x^2 - 3x + 3

=x^2 - 1,5x - 1,5x + 2,25+0,75

=x(x-1,5)-1,5(x-1,5)+0,75

=(x-1,5)^2 + 0,75 >= 0,75 => vô nghiệm

Bài 2:

Đặt H(x)=0

\(\Leftrightarrow x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

17 tháng 5 2018

Bạn dò lại đề nha

2 tháng 5 2017

tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0          (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm 
 

7 tháng 7 2015

\(h\left(x\right)=x^2+2.x.5+5^2+5=\left(x+5\right)^2+5>0\text{ với mọi }x\in R.\)

13 tháng 5 2015

-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai