| x + 1/3 | - 22 = 1
Giúp mik với :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\) (ĐK: \(x\ne0,x\ne-1\))
\(\Leftrightarrow\dfrac{360\left(x+1\right)}{x\left(x+1\right)}-\dfrac{400x}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow360\left(x+1\right)-400x=x\left(x+1\right)\)
\(\Leftrightarrow360x+360-400x=x^2+x\)
\(\Leftrightarrow-40x+360=x^2+x\)
\(\Leftrightarrow x^2+40x+x-360=0\)
\(\Leftrightarrow x^2+41x-360=0\)
\(\Rightarrow\Delta=41^2-4\cdot1\cdot\left(-360\right)=3121>0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-41+\sqrt{3121}}{2\cdot1}\approx7\left(tm\right)\\x_2=\dfrac{-41-\sqrt{3121}}{2\cdot1}\approx-48\left(tm\right)\end{matrix}\right.\)
\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\)
Điều kiện: \(x\ne0;x\ne-1\)
PT \(\Leftrightarrow\dfrac{360\left(x+1\right)-400x}{x\left(x+1\right)}=1\)
\(\Rightarrow-40x+360=x\left(x+1\right)\)
\(\Leftrightarrow-40x+360=x^2+x\)
\(\Leftrightarrow x^2+41x-360=0\)
\(\Leftrightarrow x^2+2.\dfrac{41}{2}.x+\dfrac{1681}{4}=\dfrac{3121}{4}\)
\(\Leftrightarrow\left(x+\dfrac{41}{2}\right)^2=\left(\dfrac{\sqrt{3121}}{2}\right)^2\)
\(\Leftrightarrow x+\dfrac{41}{2}=\dfrac{\sqrt{3121}}{2}\) hoặc \(x+\dfrac{41}{2}=-\dfrac{\sqrt{3121}}{2}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\) hoặc \(x=-\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\)
Vậy...
\(=\left(\dfrac{-1}{2}\right)-\dfrac{1}{2}+\dfrac{-1}{2}=-\dfrac{3}{2}\)
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)
2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)
\(=-36x^5y^7-38x^5y^7\)
\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)
3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)
\(f\left(1\right)=3+7+4-2-2=10\)
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-3\right)^2=\left(x-1\right)\left(x+1\right)\left(x-3\right)^2\)
\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)
(x-1)^3-x(x-2)^2+1
= x^3-3x^2+3x-1-x(x^2-4x+4)+1
= x^3-3x^2+3x-1- x^3+4x^2-4x+1
= x^2-x
= x(x-1)
HỌC TỐT!
@Zịt_siu_lừi
\(=x^3-3x^2+3x-1-x\left(x^2-4x+4\right)+1\)
\(=x^3-3x^2+3x-1-x^3+4x^2-4x+1\)
\(=x^2-x\)
| x + 1/3 | - 22 = 1
<=>|x+1/3|=5
*TH1:x+1/3\(\ge\)0 <=>x\(\ge\)-1/3
Khi đó: x+1/3=5<=> x=14/3 (thỏa mãn)
*TH2:x+1/3<0 <=> x<-1/3
Khi đó: x+1/3=-5 <=>x=-16/3 (thỏa mãn)
Vậy x\(\in\){14/3;-16/3}
\(\left|x+\frac{1}{3}\right|-2^2=1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|-4=1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=1+4\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=5\)
\(\Rightarrow\)\(TH1:\)\(x+\frac{1}{3}=5\)
\(\Rightarrow\)\(x=5-\frac{1}{3}\)
\(\Rightarrow\)\(x=\frac{14}{3}\)
\(\Rightarrow\)\(TH2:\)\(x+\frac{1}{3}=-5\)
\(\Rightarrow\)\(x=-5-\frac{1}{3}\)
\(\Rightarrow\)\(x=\frac{-16}{3}\)
Vậy \(x=\frac{14}{3};x=\frac{-16}{3}\)