K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

NV
8 tháng 2 2022

Em tham khảo ở đây:

Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\)   - Hoc24

5 tháng 5 2019

Dễ thấy 555 và 3x đều chia hết cho 3 nên 2y chia hết cho 3.Mà (555;2) = 1 nên y chia hết cho 3.

Đặt y = 3k (\(k\inℕ^∗\)) suy ra \(3x+6k=555\Leftrightarrow x+2k=185\Rightarrow x=185-2k\)

Do x nguyên dương nên \(185-2k\ge1\Leftrightarrow2k\le184\Leftrightarrow k\le92\)

Kết hợp \(k\inℕ^∗\) suy ra \(1\le k\le92\)

Từ đây suy ra \(\hept{\begin{cases}x=185-2k\\y=3k\end{cases}}\left(1\le k\le92;k\inℕ^∗\right)\)

27 tháng 1 2021

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

8 tháng 2 2021

x=4; y=1

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

1 tháng 3 2022

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

NV
6 tháng 3 2021

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

Bài 1: 

3x+2y=7

\(\Leftrightarrow3x=7-2y\)

\(\Leftrightarrow x=\dfrac{7-2y}{3}\)

Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)

21 tháng 1 2018

Ta có 3x – 2y = 5 ⇒ y = 3 x − 5 2 = 2 x + x − 5 2 = 2 x 2 + x − 5 2 = x + x − 5 2

Hay  y = x + x − 5 2

Đặt x − 5 2 = t t ∈ ℤ ⇒ x = 2t + 5

⇒ y = 2t + 5 + t ⇔ y = 3t + 5 ⇒ x = 5 + 2 t y = 5 + 3 t t ∈ ℤ

Đáp án: D

http://pitago.vn/question/tim-nghiem-nguyen-cua-phuong-trinh-saua-3x-2y-6b11x18y-1-52912.html

bạn vào đây xem nhé!

Hoc tốt!!!!!!!!!!!

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>