Cho tam giác ABC biết AB=3cm, AC=4cm, BC=5cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AC
a) Chứng minh tam giác ABC vuông
b) Chứng minh tam giác BCD cân
c) Gọi E là trung điểm của BC, CE cắt AB tại O. Tính OA, OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
\(BC^2=AB^2+AC^2\Rightarrow25=16+9\)( luôn đúng )
Vậy tam giác ABC vuông tại A
b, Xét tam giác BCD có
BA là đường cao
lại có AD = AC => A là trung điểm
=> BA là đường trung tuyến
Vậy tam giác BCD cân tại B
a. Ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow5^2=3^2+4^2\)
\(\Leftrightarrow25=25\left(đúng\right)\)
\(\Rightarrow\) Tam giác ABC vuông tại A
b.Xét tam giác CBA và tam giác DAB, có:
AD = AC ( gt )
góc BAC = góc DAB ( = 90 độ )
AB: cạnh chung
Vậy tam giác CBA = tam giác DAB ( c.g.c )
=> góc BCA = góc BDA ( 2 góc tương ứng )
=> Tam giác BCD cân tại B
a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)
\(\Rightarrow\Delta ABC\)vuông tại A
b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)
Mà AC=AD (gt)
=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD
=> tam giác BCD cân tại B
Bài làm
a) Ta có: BC2 = 52 = 25 cm
AC2 + AB2 = 32 + 42 = 25 cm
=> BC2 = AC2 + AB2
=> Tam giác ABC vuông tại A ( theo Pytago đảo )
b) Xét tam giác BAD và tam giác BAC có:
AD = AC ( gt )
^BAD = ^BAC = 90o
AB chung
=> Tam giác BAD = tam giác BAC ( c.g.c )
=> BD = BC ( hai cạnh tương ứng )
=> tam giác BCD cân tại B
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C