K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Xét tg ABC vuông tại A, có:

a. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\sqrt{8}\right)^2+\left(\sqrt{17}\right)^2}=5\left(cm\right)\)

b. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=1\left(cm\right)\)

23 tháng 1 2022

a, Xét Tam giác ABC vuôgn tại A

Theo định lí Pi-ta-go, ta có:

 \(AB^2+AC^2=BC^2\)

Hay \(\sqrt{8}+\sqrt{17}=\sqrt{25}=5\left(cm\right)\)

Vậy BC = 5 (cm)

b, Xét tam giác ABC vuôgn tại A

THeo định lí Pi-ta-go, ta có :

\(AB^2+AC^2=BC^2\)

hay \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}=1}\)

Vậy BC = 1cm

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

26 tháng 11 2023

Help me  pờ ly

 

 

26 tháng 11 2023

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+8^2=25+64=89\)

=>\(BC=\sqrt{89}\left(cm\right)\)

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

a, Áp dụng định lý Pitago:

`AB^2  + AC^2 = BC^2`

`=> 25 + AC^2 = 169`

`=> AC^2 = 144`

`=> sqrt 144  = 12`.

b. Áp dụng định lý Pytago ta có:

`AB^2 + AC^2 = BC^2`

`16 + 49 = BC^2`

`BC^2 = 65`

`BC  = sqrt 65`.

13 tháng 5 2022

Áp dụng định lí Pitago trong tam giác ABC vuông tại A

AC = BC2 + AB2

       = 132 + 52    

        = \(\sqrt{194}\)  = 14 cm

Áp dụng định lí Pitago trong tam giác ABC cân tại A

BC = AB2  + AC2

       = 42  + 72  

       = \(\sqrt{65}\) = 8 cm

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

20 tháng 8 2016

Tam giác ABC vuông tại A

=>AB2+AC2=BC2          (định lí Pytago)

Hay 52+(1/3BC)2=BC2

=>25+1/9BC2=BC2

=>25=8/9BC2

=>BC2=225/8

=>BC=\(\frac{15\sqrt{2}}{4}\)

=>AC=\(\frac{5\sqrt{2}}{4}\)

Vậy diện tích tam giác ABC là:

        5.\(\frac{5\sqrt{2}}{4}\)=\(\frac{25\sqrt{2}}{4}\)(cm2)

17 tháng 4 2022

a) Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

\(AB=AC\) (Do tam giác ABC cân tại A)

\(AH\) chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)

b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)

Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)

\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)