Cho tam giác ABC vuông tại A. Tính BC biết :
a) AB= √8cm, AC= √17cm
b) AB= 3/5cm, AC= 4/5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+8^2=25+64=89\)
=>\(BC=\sqrt{89}\left(cm\right)\)
Bài 2:
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
a, Áp dụng định lý Pitago:
`AB^2 + AC^2 = BC^2`
`=> 25 + AC^2 = 169`
`=> AC^2 = 144`
`=> sqrt 144 = 12`.
b. Áp dụng định lý Pytago ta có:
`AB^2 + AC^2 = BC^2`
`16 + 49 = BC^2`
`BC^2 = 65`
`BC = sqrt 65`.
Áp dụng định lí Pitago trong tam giác ABC vuông tại A
AC = BC2 + AB2
= 132 + 52
= \(\sqrt{194}\) = 14 cm
Áp dụng định lí Pitago trong tam giác ABC cân tại A
BC = AB2 + AC2
= 42 + 72
= \(\sqrt{65}\) = 8 cm
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Tam giác ABC vuông tại A
=>AB2+AC2=BC2 (định lí Pytago)
Hay 52+(1/3BC)2=BC2
=>25+1/9BC2=BC2
=>25=8/9BC2
=>BC2=225/8
=>BC=\(\frac{15\sqrt{2}}{4}\)
=>AC=\(\frac{5\sqrt{2}}{4}\)
Vậy diện tích tam giác ABC là:
5.\(\frac{5\sqrt{2}}{4}\)=\(\frac{25\sqrt{2}}{4}\)(cm2)
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
Xét tg ABC vuông tại A, có:
a. \(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\sqrt{8}\right)^2+\left(\sqrt{17}\right)^2}=5\left(cm\right)\)
b. \(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=1\left(cm\right)\)
a, Xét Tam giác ABC vuôgn tại A
Theo định lí Pi-ta-go, ta có:
\(AB^2+AC^2=BC^2\)
Hay \(\sqrt{8}+\sqrt{17}=\sqrt{25}=5\left(cm\right)\)
Vậy BC = 5 (cm)
b, Xét tam giác ABC vuôgn tại A
THeo định lí Pi-ta-go, ta có :
\(AB^2+AC^2=BC^2\)
hay \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}=1}\)
Vậy BC = 1cm