A=1+1/3+1/32+1/33+.....+1/32014. Hãy so sánh với 3/2
Giúp mình nha rồi mình tick cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
S = 1 + 3 + 32 + 33 +... + 32014
3S = 3 + 32 + 33 + 34 + ... + 32015
3S - S = ( 3 + 32 + 33 + 34 + ... + 32015) - (1 + 3 + 32 + 33 +... + 32014)
2S = 32015 - 1
S = \(\dfrac{3^{2015}-1}{2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
Ta có:
A=1+1/3+1/32+1/33+...+1/32014
=>3A=3+1/32+1/33+1/34+...+1/32015
=>2A=2+1/32015-1/3
=>A=1+2/32015-2/3
OK!