cho tam giác ABC đều. Trên BC lấy D sao cho góc DEF=60 độ với E thuộc AB, F thuộc AC. Chứng minh BE.CF = CD.BD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB = 5 cm, AC = 12 cm, BC = 13 cm (gt)
Suy ra: AB2 = 25 cm, AC2= 144 cm, BC2 = 169 cm
=> AB2 + AC2 = 25 + 144 = 169 = BC2
=> Tam giác ABC là tam giác vuông ( Định lí Pitago đảo )
BN GIÚP MIK CÂU DƯỚI VỚI ĐC KO CÂU TRÊN MIK LÀM RỒI
a) DM = ME, DK = KC => MK // EC hay MK//AC
b) MK//AC, KN//BD => ^KNM = ^A = 80 độ
KN = 1/2BD, MK = 1/2 EC, mà BD = EC => KN = MK => MNK là t/g cân
=> ^MNK = ^NMK = (180-80)/2 = 50 độ
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
góc edf=60độ nên góc edb+fdc=60độ
mà fdc+dfc=60độ (do góc acb=60độ)
do đó góc edb=dfc
mà góc b=c=60độ
suy ra tam giác ebd đồng dạng với tam giác dcf
nên be/bd=cd/cf
nên be*cf=cd*bd