K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

NV
10 tháng 3 2021

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

1 tháng 1 2017

Vi a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 va cac hoan vi cua no

1 tháng 1 2017

Vì a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 và các hoan vi của nó

14 tháng 3 2018

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

14 tháng 3 2018

Bấm vào câu hỏi tương tự 

hoặc lên Học24h 

8 tháng 1 2016

a^2 + b^2 + ab + bc+ ac < 0

<=> a^2 + b^2 + c^2 +ab + bc+ ac < c^2

<=> 2(a^2 + b^2 + c^2 +ab + bc+ ac) < 2c^2

<=> (a+b+c)^2 + a^2 + b^2 + c^2 < 2 c^2

Mà (a+b+c)^2 >= 0 nên suy ra a^2 + b^2 + c^2 < c^2

suy ra dpcm

nhầm a^2 + b^2 + c^2 < 2c^2 và suy ra dpcm

4 tháng 1 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) (1)

Ta có: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) (Bn thự cm nhé)

(1) \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=3\)

\(\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\left(đpcm\right)\)

27 tháng 1 2020

Rất dễ dàng, chúng ta có:

\(VT-VP=\frac{2ab\left[\left(a+bc-b-c\right)^2+\left(c-1\right)^2\right]+c\left(b-1\right)^2\left[\left(a+b-c\right)^2+1\right]}{2ab+c\left(b-1\right)^2}\ge0\)

Đẳng thức xảy ra khi \(a=b=c=1\). Ta có đpcm.

27 tháng 1 2020

Anh tth bày em didéplê mak e ko có bt đi nên dùng dirichlet tạm vậy.......

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc-ac-bc+c\ge0\)

\(a^2+b^2+c^2+2abc+1=\left(a-b\right)^2+\left(1-c\right)^2+2\left(ab+bc+ca\right)+2\left(abc-ac-bc+c\right)\)

Rất dễ thấy \(\left(a-b\right)^2\ge0;\left(1-c\right)^2\ge0;2\left(abc-ac-bc+c\right)\ge0\)

\(\Rightarrowđpcm\)