K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

=>y∈{2;8;0;-6}

=>x∈{5;-1;-9;-3}

22 tháng 1 2022

- Xin lỗi mình đang bận nên không giải chi tiết được :)

23 tháng 2 2020

câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)  

b) xy=-5 với x>y=>x=1,y=-5

c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5  => x=-1, y=-3

                              * x+1=-5 và y-2=1=> x=-6 , y=3

câu 2 , câu 3 tương tự

\(a.x=1;y=9\)

\(b. (x-6). (y+2)=7\)

Ta lập bảng :

\(x-6\)\(1\)\(-1\)\(7\)\(-7\)
\(y+2\)\(7\)\(-7\)\(1\)\(-1\)
\(x \)\(7\)\(5\)\(13\)\(-1\)
\(y\)\(5\)\(-9\)\(-1\)\(-3\)

\(Vậy :..........\)

2 tháng 3 2020

a) Vì x, y nguyên mà x.y = 9 nên x, y thuộc Ư(9)

Mà x< y. Ta có bảng sau

x1-9
y9-1

Vậy (x,y) \(\in\){(1;9) , ( -9; -1) }

b) vì x, y nguyên suy ra x-6 , y + 2 nguyên

mà (x-6). ( y+2) =7

nên  (x-6), ( y+2) thuộc Ư(7) .Ta lập bảng như sau

x-61-17-7
y+27-71-1
x7513-1
y5-9-1-3

Tự kết luận nhé

6 tháng 3 2020

a )

(x-3).(2y+1)=7 
(x-3).(2y+1)= 1.7 = (-1).(-7) 
Cứ cho x - 3 = 1 => x= 4 
2y + 1 = 7 => y = 3 
Tiếp x - 3 = 7 => x = 10 
2y + 1 = 1 => y = 0 
x-3 = -1 ...

6 tháng 3 2020

1.tìm các số nguyên x và y sao cho:

(x-3).(2y+1)=7

Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên

                               =>x-3  ; 2y+1 C Ư(7)

ta có bảng:

x-317-1-7
2y+171-7-1
x4102-4
y30-4-1

Vậy..............................................................................

2.tìm các số nguyên x và y sao cho:

xy+3x-2y=11

x.(y+3)-2y=11

x.(y+3)-y=11

x.(y+3)-(y+3)=11

(x-1)(y+3)=11

Vì x;y là số nguyên => x-1;y+3 là số nguyên

                               => x-1;y+3 Thuộc Ư(11)

Ta có bảng:

x-1111-1-11
y+3111-11-1
x2120-10
y8-2-14-4

Vậy.......................................................................................

7 tháng 1 2018

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

7 tháng 1 2018

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0

a: \(\left(x,y\right)\in\left\{\left(1;2\right);\left(-1;-2\right);\left(2;1\right);\left(-2;-1\right)\right\}\)

21 tháng 10 2018