K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

\(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow2x^2+4xy-xy-2y^2=7\)

\(\Leftrightarrow2x\left(x+2y\right)-y\left(x+2y\right)=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

VÌ x,y nguyên nên 2x-y và x+2y cũng nguyên

Nên 2x-y và x+2y là các ước của 7

nên có các trường hợp sau\(\left\{\left(2x-y\right);\left(x+2y\right)\right\}=\left\{\left(-1;-7\right);\left(-7;-1\right);\left(1;7\right);\left(7;1\right)\right\}\)

Tự giải nốt nhé

14 tháng 3 2021

2x2 + 3xy - 2y2 = 7

<=> 2x2 + 4xy - xy - 2y2 = 7

<=> 2x(x + 2y) - y(x + 2y) = 7

<=> (2x - y)(x + 2y) = 7

Ta có 7 = 1.7 = (-1).(-7)

Lập bảng xét các trường hợp

2x - y1-7-17
x + 2y-717-1
x-1(tm)-13/5 (loại)1 (tm)13/5 (loại)
y-3 (tm)9/5 (loại)3 (tm)-9/5 (loại)

Vậy các cặp (x;y) nguyên tìm được là (-1;-3) ; (1;3)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

$3xy+x-y=1$

$\Rightarrow x(3y+1)-y=1$

$\Rightarrow 3x(3y+1)-3y=3$

$\Rightarrow 3x(3y+1)-(3y+1)=2$

$\Rightarrow (3y+1)(3x-1)=2$

Do $x,y$ là số nguyên nên $3x-1, 3y+1$ là số nguyên. Mà tích của chúng bằng 2 nên ta có các TH sau:

TH1: $3x-1=1, 3y+1=2\Rightarrow x=\frac{2}{3}$ (loại) 

TH2: $3x-1=-1, 3y+1=-2\Rightarrow x=0; y=-1$

TH3: $3x-1=2, 3y+1=1\Rightarrow x=1; y=0$

TH4: $3x-1=-2, 3y+1=-1\Rightarrow x=\frac{-1}{3}$ (loại)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

2.

$2x^2+3xy-2y^2=7$

$\Rightarrow (x+2y)(2x-y)=7$

Ta xét các TH sau:

TH1: $x+2y=1, 2x-y=7$

$\Rightarrow 2(x+2y)-(2x-y)=2-7=-5$

$\Leftrightarrow 5y=-5\Leftrightarrow y=-1$.

$x=1-2y=1-2(-1)=1+2=3$

TH2: $x+2y=-1, 2x-y=-7$

$\Rightarrow x=-3; y=1$

TH3: $x+2y=7, 2x-y=1$

$\Rightarrow x=\frac{9}{5}$ (loại) 

TH4: $x+2y=-7, 2x-y=-1$

$\Rightarrow x=\frac{-9}{5}$ (loại)

Vậy.............

3 tháng 4 2017

2x2+3xy-2y2=7

2x2+4xy-xy-2y2=7

2x(x+2y)-y(x+2y)=7

(x+2y)(2x-y)=7

.......................................................

6 tháng 4 2018

Dạng này thì ta phân tích vế trái là 1 tích bên phải là 1 hằng số:

2x^2+3xy-2y^2=7 <=> 2x^2 + 4xy-xy-2y^2=7

<=> 2x(x+2y)- y(x+2y)=7 <=> (x+2y)(2x-y)=7

vì 7= 7.1=1.7=-1.(-7)=-7.(-1) nên ta có 4 trường hợp: 

x+2y17-7-1
2x-y71-1-7
x0,21,8-12,2-3
y0,42,6-2,61
kết luận loạiloạiloạithỏa mãn

Vậy x=-3; y=1 mk tính vội nên k bít đúng ko ns    ~~~ chúc bạn lul lul hok tốt nhoa ~~~

24 tháng 5 2015

<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0  (1)

Coi (1) là phương trình bậc 2 ẩn x

\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8 

Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương 

<=> y2 + 4y - 8  = k2 (k nguyên)

<=> y2 + 4y + 4 - k2 = 12

<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12

=> (y + 2 + k)  \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}

y+2+k12-121-13-34-42-26-6
y+2-k1-112-124-43-36-62-2
k13/2 (L)-11/2 (L)-11/2 (L)11/2(L)-1/2(L)1/2(L)1/2(L)-1/2(L)-222-2
y        2-62-6

Vậy y = -6 hoặc y = 2

Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9

Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3

Vậy ...

 

15 tháng 4 2016

Nhân 4 vào pt trên ta được 4x2+8y2+12xy-8x-16y+12=0

          tương đương 4x2+9y2+4+12xy-8x-12y-y2-4y+8=0

                             (2x+3y-2)2 -(y+2)2 = -12

                                    (x+y-2)(x+2y)=-3

  • Ta có các hệ pt :x+y-2=3 ; x+2y=-1
  • x+2y-2= -3 ; x+2y =1

         .giải hệ rồi suy ra nghiệm (x,y)=(-3,2);(11,-6)

  •  
20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

21 tháng 2 2016

không có phương trình bạn nhé

ha

21 tháng 2 2016

bạn ơi, xem lại đề ra 1 chút, hình như có câu sai đề thì phải

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

3 tháng 9 2020

Ta có phương trình :

\(x^2y+x^2=x^3-y+2x+7\)

\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)

\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)

\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)

Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)

\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)

\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)

\(\Leftrightarrow x+8⋮x^2+1\)

\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)

\(\Leftrightarrow x^2+1-65⋮x^2+1\)

\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)

\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)

\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\)\(x^2\) là số chính phương với \(x\inℤ\)

\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)

+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )

+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )

+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )

+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )

+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)