Cho tam giác ABC có BC = a, CA = b, AB = c. CMR:
ab + bc + ca ≥ 4\(\sqrt{3}\).S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo công thức Herong thì:
\(S=\sqrt{p(p-a)(p-b)(p-c)}=\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\)
Do vậy ta cần CM: \(\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\leq \frac{\sqrt{3}}{4}.\sqrt[3]{a^2b^2c^2}\)
\(\Leftrightarrow (a+b+c)^3(a+b-c)^3(b+c-a)^3(c+a-b)^3\leq 27(abc)^4\)
Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\)
Điều cần CM trở thành: \(\frac{4096}{27}(x+y+z)^3(xyz)^3\leq [(x+y)(y+z)(x+z)]^4\)
----------------------------------------------
Thật vậy:
Ta có bổ đề quen thuộc: \((x+y)(y+z)(x+z)\geq \frac{8}{9}(xy+yz+xz)(x+y+z)\)
\(\Rightarrow [(x+y)(y+z)(x+z)]^4\geq \frac{4096}{9^4}(xy+yz+xz)^4(x+y+z)^4\)
Mà theo BĐT AM-GM:
\( \frac{4096}{9^4}(xy+yz+xz)^4(x+y+z)^4=\frac{4096}{27}(x+y+z)^3.\frac{(xy+yz+xz)^4(x+y+z)}{243}\)
\(\geq \frac{4096}{27}(x+y+z)^3.\frac{(3\sqrt[3]{x^2y^2z^2}]^4.3\sqrt[3]{xyz}}{243}=\frac{4066}{27}(x+y+z)^3(xyz)^3\)
Do đó: \([(x+y)(y+z)(x+z)]^4\geq \frac{4066}{27}(x+y+z)^3(xyz)^3\) (đpcm)
Vậy............
Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé
Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)
Qua E kẻ đường thẳng song song BF cắt AC tại K
Theo ta-lét ta có:
\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)
Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I
Theo talet ta có
\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)
=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)
=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)
Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)
=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)
Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)
A B' C B C' K y x b c D H N A/2
- Dựng phân giác AD của góc A . Sau đó dựng BB' và CC' vuông góc với AD
- Đặt BB' = x , CC' = y . Ta có :
+) \(\Delta ABB'\)cân tại A \(sin\frac{A}{2}=\frac{x}{2c}\)
+) \(\Delta ACC'\)cân tại A \(sin\frac{A}{2}=\frac{y}{2b}\)
\(\Rightarrow sin^2\frac{A}{2}=\frac{xy}{4bc}\)
Để cm(1) , ta cần cm : \(xy\le a^2\)
+) Trong tam giác BHD vuông tại H ta có : \(BH\le CD\)hay \(\frac{x}{2}\le BD\)
+) Trong tam giác CKD vuông tại K ta có : \(CK\le CH\)hay \(\frac{y}{2}\le CD\)
\(\Rightarrow a=BD+CD\ge\frac{x+y}{2}\ge\sqrt{xy}\)
\(\Rightarrow a^2\ge xy\left(đpcm\right)\)
A B C D E F
Kẻ phân giác AD của tam giác ABC (D nằm trên đoạn BC)
Từ B,C kẻ các đường vuông góc với đường thẳng AD tại E,F
Khi đó ta có: \(\sin\widehat{BAE}=\frac{BE}{AB}=\frac{BE}{c}\) ; \(\sin\widehat{FAC}=\frac{CF}{AC}=\frac{CF}{b}\)
Mà \(\sin\frac{\widehat{A}}{2}=\sin\widehat{BAE}=\sin\widehat{FAC}=\frac{BE}{c}=\frac{CF}{b}=\frac{BE+CF}{b+c}\)
Ta thấy \(\hept{\begin{cases}BE\le BD\\CF\le CD\end{cases}}\Rightarrow BE+CF\le BD+CD=BC\)
Lại có theo bất đẳng thức Cauchy: \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sin\frac{\widehat{A}}{2}=\frac{BE+CF}{b+c}\le\frac{BC}{2\sqrt{bc}}=\frac{a}{2\sqrt{bc}}\)
Dấu "=" xảy ra khi tam giác ABC cân tại A
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
Ta cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge48\left(\dfrac{a+b+c}{2}\right)\left(\dfrac{a+b-c}{2}\right)\left(\dfrac{b+c-a}{2}\right)\left(\dfrac{c+a-b}{2}\right)\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\le abc\)
Nên ta chỉ cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (đúng)
Em cảm ơn thầy ạ.