Tồn tại hay không số tự nhiên \(n\) để \(n^2+n+1\) chia hết cho 2015
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LH
chứng minh tồn tại vô số n là số tự nhiên sao cho 4n2 +1 chia hết cho 5 và chia hết chô 13
0
KS
0
VA
1
9 tháng 11 2015
K có . Gọi 22n+2n+1 là A
Đầu tiên để A (22n+2n+1) chia hết cho 20152016 thì :
A phải chia hết cho 5
Nếu 2n chia 5 dư 1 => 22n chia 5 dư 1 => A k chia hết cho 5
Nếu 2n chia 5 dư 2 => 22n chia 5 dư 4 => A k chia hết cho 5
Nếu 2n chia 5 dư 3 => 22n chia 5 dư 4 => A không chia hết cho 5
Nếu 2n chia 5 dư 4 => 22n chia 5 dư 1 => A không chia hết cho 5
=> k có số nào hết nhé bạn
XN
0
5 tháng 11 2017
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
. 2015 chia hết cho 5, vậy ta đặt vấn đề \(n^2+n+1\) có chia hết cho 5 không?
. Ta có: \(n^2+n=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp nên tận cùng chỉ có thể bằng 0,2,6
. => Tận cùng của \(n\left(n+1\right)+1\) là 1,3,7
. => \(n\left(n+1\right)+1\) không chia hết cho 5
. => \(n^2+n+1\) không chia hết cho 2015
. Vậy không tồn tại số tự nhiên n để \(n^2+n+1\) chia hết cho 2015