Tìm số tự nhiên x biết :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
Giúp mình nha !!!!!!!!!!! Trình bày rõ cách làm + đúng = tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Leftrightarrow x+1=2011\)
\(\Leftrightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\frac{2}{x+1}=1-\frac{2009}{2011}\)
\(\frac{2}{x+1}=\frac{2}{2011}\)
\(x+1=2011\)
\(x=2011-1\)
\(\Rightarrow x=2010\)
b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow\)\(x+1=2015\)
\(\Rightarrow x=2014\)
a, 2/3x -3/2.x-1/2x=5/12
x.(2/3-3/2-1/2)=5/12
x. -4/3=5/12
x=5/12:-4/3
x=-5/16
b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015
1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
1/2(1-1/x+1)=2013/2015
1-1/x+1=2013/2015 : 1/2
1-1/x+1=4206/2015
suy ra đề sai
1/2.(1/3+1/6+1/10+...+1/x(x+1))=1/2.2016/2018
1/6+1/12+1/20+...+1/x(x+1)=504/1009
1/2.3+1/3.4+1/4.5+...+1/x(x+1)=504/1009
1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=504/1009
1/2-1/x+1=504/1009
x-1/2(x+1)=504/1009
-> 1009(x-1)=504.2(x+1)
1009x-1009=1008x+1008
1009x-1008x=1008+1009
->x=2017
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2016}{2018}\)
\(A=\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{x\left(x+1\right):2}\)
\(A=\frac{1}{2\left(2+1\right)}\cdot2+\frac{1}{3\left(3+1\right)}\cdot2+...+\frac{1}{x\left(x+1\right)}.2=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2016}{2018}\)
\(A=1-\frac{1}{x+1}=\frac{2016}{2018}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2016}{2018}=\frac{1}{1009}\)
\(\Rightarrow x+1=1009\Rightarrow x=1008\)
1/3 + 1/6 + 1/10 + .......+2/x(x + 1) = 2015/2017
=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017
=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017
=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]
=> (1/2 + -1/x+1) .2 =2015/2017
=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.
=> -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017
=> -1/x+1 = -1/2017
=>x+1=2017
=> x= 2016
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
\(\Rightarrow4x-\left(\frac{4}{5.7.9}+\frac{4}{7.9.11}+...+\frac{4}{99.101.103}\right)=\frac{2}{83224}=\frac{1}{41612}\)
\(4x-\left(\frac{9-5}{5.7.9}+\frac{11-7}{7.9.11}+...+\frac{103-99}{99.101.103}\right)=\frac{1}{41612}\)
\(4x-\left(\frac{1}{5.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.11}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)=\frac{1}{41612}\)
\(4x-\left(\frac{1}{5.7}-\frac{1}{101.103}\right)=\frac{1}{41612}\)
Từ đó tìm ra x
2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2.[1/6+1/12+1/20+...+1/x.(x+1)]=2013/2015
1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2013/4030
1/2-1/3+1/3-1/4+...+1/x-1/x+1=2013/4030
1/2-1/x+1=2013/4030
1/x+1=1/2015
=> x+1=2015
x=2014
Vậy x=2014
Đặt A=Vế trái
Ta có :
\(A \over 2 \)\(= \)\({1\over 6 } +{1\over 12 }+{1\over 20 }+...+{1\over x(x+1)}\)
=\({1\over 2}-{1\over 3}+{1\over 3}-{1\over 4}+{1\over4}-{1\over 5}+...+{1\over x-1}-{1\over x}+{1\over x}-{1\over x+1}\)
=\({1\over2}-{1\over x+1}\)
Từ đó suy ra: \({1\over2}-{1\over x+1}={2013\over4030}\)
=> x=2014
nhân cả 2 vế của đẳng thức với 1/2 ta được
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-......+\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2014}{2015}\)
\(\frac{1}{x+1}=-\frac{2013}{4030}\)
hay \(1:\left(x+1\right)=-\frac{2013}{4030}\)
\(x+1=-\frac{4030}{2013}\)
\(=>x=-\frac{6043}{2013}\)