cho da thuc P(x)=ax2 +bx+c.chứng minh P(-1)xP(-2) <0 biết 5a-3b+2c =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;Vì đa thức P(x) có nghiệm là -1
=>m.(-1)2+2m(-1)-3=0
=>m-2m =3
=>-m =3
=>m =-3
Ta có:
\(A\left(2\right)=a.2^2+b.2+c=4a+2b+c\left(1\right)\)
\(A\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\left(2\right)\)
Lấy (1)+(2),ta đc:
\(A\left(2\right)+A\left(-1\right)=\left(4a+2b+c\right)+\left(a-b+c\right)=\left(4a+a\right)+\left(2b-b\right)+\left(c-c\right)\)
\(=5a+b+2c=0\)
=>\(A\left(2\right)=-A\left(-1\right)\)
=>\(A\left(2\right).A\left(-1\right)=-A\left(-1\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đpcm)
A(2)=a.22+b.2+c=4a+2b+c
A(-1)=a.(-1)2+(-1).b+c=a-b+c
=> A(2) + A(-1) = 5a+b+2c=0 (theo gia thiet)
=> A(2) = -A(-1)
=> A(2).A(-1) = -A(-1).A(-1)=- <A(-1)>2 < hoac =0
Dấu = xảy ra khi a=b=c=0
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
\(H\left(-1\right)=a-b+c\) (1)
\(H\left(-2\right)=4a-2b+c\) (2)
Lấy (1) + (2) vế theo vế được
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
Suy ra \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)
Hoặc \(H\left(-1\right)\)và\(H\left(-2\right)\)có 1 số âm và một số dương
\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\)
P(-1) = a.(-1)2 + b.(-1) + c = a - b + c
P(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
=> P(-1) + P(-2) = 5a - 3b + 2c = 0
=> P(-1) = - P(-2)
=> P(-1) . P(-2) = - P2 (-2) \(\le\) 0 Vì P2 (-2) \(\ge\) 0
=> ĐPCM