K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2a}=\dfrac{a+b+c}{2(a+b+c)}=\dfrac{1}{2} \\->a=\dfrac{1}{2}.2b=b \\b=\dfrac{1}{2}.2c=c \\c=\dfrac{1}{2}.2a=a \\->a=b=c (đpcm)\)

22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

NV
25 tháng 7 2021

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

NV
25 tháng 7 2021

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

1 tháng 5 2017

Với mọi x, y > 0 ta luôn có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) 

Đẳng thức xảy ra   \(\Leftrightarrow\)  x = y

Ta có:   \(\frac{2}{2a+b+c}=\frac{1}{2}.\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(=\frac{1}{8}\left(\frac{4}{a+b}+\frac{4}{a+c}\right)\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)=\frac{1}{8}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (1)

Tương tự \(\frac{2}{2b+c+a}\le\frac{1}{8}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) (2)   và    \(\frac{2}{2c+a+b}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)  (3)

Cộng (1), (2) và (3) ta được: \(A\le\frac{1}{8}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Vậy \(A_{max}=\frac{3}{2}\) \(\Leftrightarrow\) \(a=b=c=1\)

5 tháng 7 2019

\(VT\le\frac{1}{\sqrt[3]{9}}\left(\frac{a+2b+3+3}{3}+\frac{b+2c+3+3}{3}+\frac{c+2a+3+3}{3}\right)\)

\(=\frac{1}{\sqrt[3]{9}}.\frac{3\left(a+b+c\right)+18}{3}=\frac{9}{\sqrt[3]{9}}=\sqrt[3]{81}=3\sqrt[3]{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

15 tháng 5 2019

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

14 tháng 5 2019

Hoa 

cả

mắt

1 tháng 1 2020

thiếu đề à ?cho thế là xong à?