cho tam giác ABC có góc BAC bằng 75 độ, góc ABC bằng 35 độ. phân giác của góc BAC cắt cạnh BC tại D. Đường thẳng vuông góc với AD tại A cắt BC tại E. Gọi M là trung điểm của DE. Chứng minh rằng
a) tam giác ACM cân
b) AB<(AD+AE)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC ta có
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180\sigma\)
=> \(\widehat{ACB}=70\sigma\)
=> \(\widehat{BAD}=\widehat{CAD}\)= 37,5 độ
+ \(\widehat{BAE}\)= 37,5 độ + 90 độ = 127,5 độ
=> góc AEB = 180 độ - ( 35 độ + 127,5 độ )
=> góc AEB = 17,5 độ
+tam giác DAE vuông tại A có đường trung tuyến AM
=> AM = 1/2 DE => AM = ME = MD
+ AM = ME => tam giác AME cân tại M
=> góc AEM = góc EAM = 17,5 độ
+ góc AMC = góc AEM + góc EAM ( tính chất góc ngoài )
=> góc AMC = 17,5 độ + 17,5 độ = 35 độ
+ \(\widehat{ACB}=\widehat{AMC}+\widehat{CAM}\)=> góc CAM = góc ACB - góc AMC = 35 độ
=> \(\widehat{AMC}=\widehat{CAM}\)
=> tam giác ACM cân tại C ( đpcm )
c) Tam giác ACM cân tại C => AC = CM
góc ABC = góc AMC => tam giác ABM cân tại A
=> AB = AM => AB = ME ( AM = ME )
+ Chu vi tam giác ABC = AB + AC + BC
= ME + MC + BC = BE
=> chu vi tam giác ABC bằng độ dài đoạn BE
b) tam giác ABM cân tại A
=> AB = AM
=> 2AB = AM + AM
=> 2AB = DM +ME = DE
=> 2AB < AD + AE ( do DE < AD + AE )
=> AB < (AD + AE )/2
Còn lại tham khảo câu hỏi của Bíu ARMY
Cho hình vẽ đi