K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

undefined

BM = 3/2 BG, CN = 3/2 CG

Ta có BM + CN = 3/2 (BG + CG) > 3/2. BC = 3/2 x 12 = 18

 

 

 

3 tháng 1 2018

7 tháng 6 2021

NÀY VI phạm nhé

7 tháng 6 2021

Sao vi phạm vậy bạn " Lê Đông Quân "

3 tháng 12 2022

đáp án lá c

17 tháng 9 2023

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G. 

17 tháng 8 2017

Vì M, N lần lượt là trung điểm của cạnh AC và AB nên đường thẳng MN song song với BC.

Do đó tứ giác BCMN là hình thang và có hai đường chéo BM và CN cắt nhau tại O.

Theo kết quả chứng minh ở bài tập số 9, ta có: OM.OC = ON.OB.

Xét ΔABC có

N,M lần lượt là trung điểm của AB,AC

=>NM là đường trung bình của ΔABC

=>NM//BC

Xét ΔONM và ΔOCB có

\(\widehat{ONM}=\widehat{OCB}\)(hai góc so le trong, MN//BC)

\(\widehat{NOM}=\widehat{COB}\)(hai góc đối đỉnh)

Do đó: ΔONM đồng dạng với ΔOCB

=>\(\dfrac{ON}{OC}=\dfrac{OM}{OB}\)

=>\(ON\cdot OB=OM\cdot OC\)

NM
24 tháng 8 2021

undefined

Do G là trọng tâm tam giác nên ta có :

\(\hept{\begin{cases}CG=\frac{2}{3}CN\\BG=\frac{2}{3}BM\end{cases}}\Rightarrow CG>BG\Rightarrow\widehat{GBC}>\widehat{GCB}\)

21 tháng 9 2023

Tham khảo:

a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.

Vì AB = AC (tính chất tam giác cân)

\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)

Xét tam giác AMB và tam giác ANC ta có :

AM = AN (cmt)

AB = AC

Góc A chung

\( \Rightarrow \Delta AMB =\Delta ANC\)

\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )

b) Vì BM và CN là các đường trung tuyến

Mà I là giao điểm của BM và CN

\( \Rightarrow \) I là trọng tâm của tam giác ABC

\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC

\( \Rightarrow \) H là trung điểm của BC