cho đẳng thức ad=bc.Chứng minh rằng
2a+c/2b+d=a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:
Lấy a/b=c/d=k(k thuộc N*)
=>a=bk ; c=dk
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1)
+ 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2)
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)
Vậy 2a-3c/2b-3d=2a+3c/2b+3d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow a=bk\); \(c=dk\)
Ta có: \(\frac{2a+c}{2b+d}=\frac{2bk+dk}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\)(1)
\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)(2)
Từ (1) và (2) \(\Rightarrow\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)
\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)
Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)
b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)