(3a+2b)^2-18a(3a+2b)+81a^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: =(5a-a+b)(5a+a-b)
=(4a+b)(5a-b)
b: =(2a-a-b)(2a+a+b)
=(a-b)(3a+b)
c: =(7a-2a+b)(7a+2a-b)
=(5a+b)(9a-b)
d: =(6a-3a+2b)(6a+3a-2b)
=(3a+2b)(9a-2b)
e: =(9a-5a+3b)(9a+5a-3b)
=(4a+3b)(14a-3b)
Lời giải:
$25a^2-(a-b)^2=(5a)^2-(a-b)^2=[5a-(a-b)][5a+(a-b)]=(4a+b)(6a-b)$
$4a^2-(a+b)^2=(2a)^2-(a+b)^2=[2a-(a+b)][2a+(a+b)]=(a-b)(3a+b)$
$49a^2-(2a-b)^2=(7a)^2-(2a-b)^2=[7a-(2a-b)][7a+(2a-b)]=(5a+b)(9a-b)$
$36a^2-(3a-2b)^2=(6a)^2-(3a-2b)^2=[6a-(3a-2b)][6a+(3a-2b)]$
$=(3a+2b)(9a-2b)$
$81a^2-(5a-3b)^2=(9a)^2-(5a-3b)^2=[9a-(5a-3b)][9a+(5a-3b)]$
$=(4a+3b)(14a-3b)$

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)

\(Q=6a^2b-3a^2=6\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}-3\cdot\dfrac{1}{9}=\dfrac{3}{2}\)

Chứng minh hả ? -.-
( 3a + 2b - 1 )( a + 5 ) - 2b( a - 2 ) = ( 3a + 5 )( a + 3 ) + 2( 7b - 10 )
<=> 3a2 + 15a + 2ab + 10b - a - 5 - 2ab + 4b = 3a2 + 14a + 15 + 14b - 10
<=> 3a2 + 14a + 14b - 5 = 3a2 + 14a + 14b - 5
=> đpcm

a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
rút gọn hay tính a,b?
\(=\left(3a+2b-9a\right)^2=\left(2b-6a\right)^2\)