Giải hộ tôi bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)
\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)
\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)
\(\Rightarrow10x^2+40x+50=0\)
\(\Rightarrow10\left(x^2+4x+5\right)=0\)
\(\Rightarrow x^2+4x+5=0\)
\(\Rightarrow\left(x^2+4x+2\right)+3=0\)
\(\Rightarrow\left(x+2\right)^2=-3\)
Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)
Vậy...
5/8 = 45/72
20/15 = 4/3 = 96/72
24/32 = 3/4 = 54/72
15/18 = 5/6 = 60/72
77/99 = 7/9 = 56/72
----------------------HỌC TỐT-----------------------
2/35 + 4/77 + 2/143 + 4/221 + 2/323 + 4/437 + 2/575
= 2/5.7 + 4/7.11 + 2/11.13 + 4/13.17 + 2/17.19 + 4/19.23 + 2/23.25
= 1/5 - 1/7 + 1/7 - 1/11 + 1/11 - 1/13 + 1/13 - 1/17 + 1/17 - 1/19 + 1/19 - 1/23 + 1/23 - 1/15
= 1/5 - 1/25
= 4/25
\(\frac{2}{35}\)+ \(\frac{4}{77}\)+ \(\frac{2}{143}\)+ \(\frac{4}{221}\)+ \(\frac{2}{323}\)+ \(\frac{4}{437}\)+ \(\frac{2}{575}\).
= \(\frac{2}{5.7}\)+ \(\frac{4}{7.11}\)+ \(\frac{2}{11.13}\)+ \(\frac{4}{13.17}\)+ \(\frac{4}{17.21}\)+ \(\frac{2}{21.23}\).
= \(\frac{1}{5}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{11}\)+ \(\frac{1}{11}\)- \(\frac{1}{13}\)+ \(\frac{1}{13}\)- \(\frac{1}{17}\)+ \(\frac{1}{17}\)- \(\frac{1}{21}\)+ \(\frac{1}{21}\)- \(\frac{1}{23}\).
= \(\frac{1}{5}\)- \(\frac{1}{23}\).
= \(\frac{23}{115}\)- \(\frac{5}{115}\).
= \(\frac{18}{115}\).
Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)= \(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)= \(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
=> 4 = 1 + DC
=> DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có:
\(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
\(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)= \(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm
Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có:
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm