Cho tam giac ABC có AM vừa là phân giác vừa là trung tuyến của Tam giac ABC. Chứng minh ABC cân .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔAMC có
AM chung
AB=AC
BM=CM
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
MB=MC=BC/2=16cm
AM=căn 20^2-16^2=12cm
AG=2/3*AM=8cm
B C A H D 1 2 1 2
Trời ạ, lại bắt vẽ hình. Thầy mk vẽ một cái hình tam giác kiểu này cũng phải mất chừng 30 phút mới vẽ đúng đc. Nhưng thôi, mk vẽ kiểu này chắc bạn cũng hiểu rồi hen, có ký hiệu đàng hoàng mà. À mà bài này do dữ liệu cho trước ko liên quan j tới nhau nên phải vẽ thêm HD nữa.
Bài làm
Trên tia đối của tia AH, vẽ HD = AH.
Xét tam giác ABH và tam giác HCD, ta thấy:
- BH = HC (gt)
- AH = HD (gt)
- \(\widehat{H_1}=\widehat{H_2}\)(đđ)
suy ra: tam giác ABH = tam giác DCH (c.g.c.)
suy ra:
- AB = CD (1)
- \(\widehat{A_1}=\widehat{D}\)
Mà \(\widehat{A_1}=\widehat{A_2}\)(gt)
=> \(\widehat{A_2}=\widehat{D}\)
=> tam giác ACD cân tại C
=> CD = AC (2)
Từ (1) và (2) suy ra:
AB = AC
=> tam giác ABC cân tại A
Xét tam giác AMB và tam giác AMC có:
Góc BAM=Góc CAM(AM là đường phân giác góc BAC)
Chung AM
BM=CM(AM là đường trung tuyến góc BAC)
=>Tam giác AMB=Tam giác AMC.
=>AB=AC.
=>Tam giác ABC cân tại A(ĐPCM).
mk có cách khác:
vẽ MH vuông góc AB ; MK vuông góc AC
vì AM là trung tuyến vừa là p/giác của góc BAC
=> MH = MK
xét tam giác MHB và tam giác MKC có:
góc H = góc K = 900 cách vẽ)
MH = MK (cmt)
BM = CM (gt)
=> tam giác MHB = tam giác MKC ( ch-gn)
=> góc B = góc C
=> tam giác ABC cân tại A
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
\(\text{Xét }\Delta ABC\text{ có:}\)
\(\left\{{}\begin{matrix}AM\text{ là đường phân giác(gt)}\\AM\text{ là đường trung tuyến(gt)}\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\text{ cân tại A}\)
A B C M
Xét tam giác AMB và tam giác AMC ta có:
AM chung
góc BMA = góc CMA (AM là phân giác góc A)
BM = CM (AM là trung tuyến)
=> Tam giác AMB= tam giác AMC (c.g.c)
=> Góc MBA = góc MCA và AB = AC
=> Tam giác ABC cân tại A (Đpcm)