X,Y x XY,X = XY,XY
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn thôi nhé:
Lời giải:
a)\(xy+x+y+1=0\)
\(\Rightarrow x\left(y+1\right)+1\left(y+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\)
b)\(xy-x-y=0\)
\(\Rightarrow xy-x-y+1=1\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
c)\(xy-x-y-1=0\)
\(\Rightarrow xy-x-y+1=2\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=2\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)
d) \(xy-x-y+1=0\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
e)\(xy+2x+y+11=0\)
\(\Rightarrow xy+2x+y+2=-9\)
\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=-9\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=-9\)
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
X,Y.XY,X=XY,XU
=) XY,X=XY,XU:X,Y=10,1
=) X=1;Y=0
Vậy X=1,Y=0 . TL: 1,0.10,1=10,10