Cho tam giác ABC đều, đường cao AH. Trên tia HC lấy điểm D sao cho HD=HA. Trên nửa mặt phẳng không chứa điểm A bờ BD vẽ tia Dx sao cho góc BDx=15 độ, Dx cắt AB ở E . CMR tam giác DHE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh phản chứng nhé_._
Giả sử \(HD>HE\Rightarrow\widehat{HED}>\widehat{BDx}\Rightarrow\widehat{HED}>15^0\left(1\right)\)
Mặt khác:\(HD>HE\Rightarrow HA>HE\left(AH=DH\right)\Rightarrow\widehat{AEH}>\widehat{EAH}\Rightarrow\widehat{AEH}>\frac{60^0}{2}=30^0\left(2\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (1);(2) suy ra \(\widehat{BED}>30^0+15^0\Rightarrow\widehat{BED}>45^0\Rightarrow\widehat{ABD}=\widehat{BED}+\widehat{BDE}>45^0+15^0=60^0\)(Trái với giả thiết)
Giả sử \(HD< HE\Rightarrow\widehat{HED}< \widehat{HDx}\Rightarrow\widehat{HED}< 15^0\left(3\right)\)
Mặt khác:\(HD< HE\Rightarrow HA< HE\left(HD=HA\right)\Rightarrow\widehat{AEH}< \frac{60^0}{2}\Rightarrow\widehat{AEH}< 30^0\left(4\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (3);(4) suy ra \(\Rightarrow\widehat{BED}=\widehat{AEH}+\widehat{HED}< 15^0+30^0=45^0\Rightarrow\widehat{ABD}< \widehat{BED}+\widehat{BDE}=45^0+15^0=60^0\)(Trái với giả thiết)
Vậy HD=HE.