1. Cho ΔABC vuông tại A. Trên cùng một nửa mặt phẳng chứa điểm A có bờ là đường thẳng BC kẻ các tia Bx, Cy cùng vuông góc với BC. Đường thẳng qua A vuông góc với AM ( M thuộc đoạn BC ) cắt Bx tại E và Cy tại F.
Chứng minh rằng:
a) ΔAFC đồng dạng với ΔAMB.
b) ΔFME là tam giác vuông.
c) Tìm vị trí điểm M trên cạnh BC để diện tích ΔMEF đạt min?
2. Cho hình bình hành ABCD có ^A < 90o, hai đường chéo AC và BD cắt nhau tại O. Gọi N là trung điểm AO; M là trung điểm BO. Trên cạnh AB lấy điểm F sao cho tia FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K.
Chứng minh rằng:
a) \(\dfrac{BA}{BF}+\dfrac{BC}{BE}=4\)
b) \(BE+AK\) ≥ \(BC\)
1c (2 câu kia em tự giải)
Kẻ đường cao AH \(\Rightarrow\) AH cố định
Do \(\widehat{MAF}\) và \(\widehat{MCF}\) cùng nhìn MF dưới 1 góc vuông nên tứ giác MAFC nội tiếp
\(\Rightarrow\widehat{AFM}=\widehat{ACM}\) (cùng chắn AM)
\(\Rightarrow\Delta_VFME\sim\Delta_VCAB\left(g.g\right)\) với tỉ số đồng dạng \(k=\dfrac{AM}{AH}\)
\(\Rightarrow S_{MEF}=k^2.S_{ABC}\Rightarrow S_{MEF-min}\) khi \(k_{min}\)
Mà trong tam giác vuông AHM ta có \(AH\le AM\Rightarrow k\ge1\Rightarrow k_{min}=1\) khi M trùng H
Hay diện tích MEF min khi M là chân đường cao từ A xuống BC