Chứng minh rằng :
A = 3\ 12*22 + 5\22*32 + ... +19\ 92+102 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Ta có 12 + 22 + 32 + …102 = 385
Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32
Do đó ta tính được A = 32 + 62 + 92 + …+302 = 3465
Đăt S = \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)
S có 20 số hạng.Nhóm thành 2 nhóm,mỗi nhóm có 10 số hạng
Ta có: S = \(\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)\)
=> S < \(\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
=> S < \(\frac{10}{20}+\frac{10}{30}\)
=> S < \(\frac{50}{60}=\frac{5}{6}\) (1)
Lại có:S > \(\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
=> S > \(\frac{10}{30}+\frac{10}{40}\)
=> S > \(\frac{70}{120}=\frac{7}{12}\) (2)
Từ (1) và (2) => \(\frac{7}{12}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{5}{6}\) (đpcm)
Ta thấy:
\(2^2=2.2>1.2\Rightarrow\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(3^2=3.3>2.3\Rightarrow\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.................
\(9^2=9.9>8.9\Rightarrow\dfrac{1}{9^2}< \dfrac{1}{8.9}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
=> Đpcm
Ta thấy:
22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2
32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3
.................
92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9
⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9
⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89
=> ...(tự viết)
Ta thấy:
22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2
32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3
.................
92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9
⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9
⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89
=> 11111111111111111111110101010110000
HACK
cai cuoi cùng 92+102 hay 92.102