K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

b: Theo đề, ta có:

\(\sqrt{x}+1=\sqrt{3}\cdot\sqrt{x}-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}\left(1-\sqrt{3}\right)=-\sqrt{3}-1\)

hay \(x=4\)

\(f(x)=ax^2+bx+6\)

Để \(f(x)\) là đa thức bậc \(1\) thì \(ax^2=0\)

\(→a=0\)

Thay \(x=1\) vào \(f(x)=ax^2+bx+6\)

\(f(1)=b.1+6=b+6\)

Mà \(f(1)=3\)

\(\Rightarrow b+6=3\Rightarrow b=3−6\Rightarrow b=−3\)

Vậy \(a=0;b=−3\)

27 tháng 10 2021

Bài 4: 

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

27 tháng 10 2021

undefined

\(TanB=\dfrac{AC}{AB}\Rightarrow Tan30^o=\dfrac{AC}{4,5}\Rightarrow AC=Tan30^o.4,5=\dfrac{3\sqrt{3}}{2}\left(m\right)\)

\(CosB=\dfrac{AB}{BC}\Rightarrow Cos30^o=\dfrac{4,5}{BC}\Rightarrow BC=Cos30^o.4,5=\dfrac{9\sqrt{3}}{4}\)

Chiều cao ban đầu của cây tre là: \(\dfrac{3\sqrt{3}}{2}+\dfrac{9\sqrt{3}}{4}=\dfrac{15\sqrt{3}}{4}\approx6,5\left(m\right)\)

 

16 tháng 12 2021

D

12 tháng 5 2021

a) [\(\dfrac{-2}{3}\).(-3)]. (x.x^2).(y.y).z

=2x^3y^2z

- Bậc: 6

b) A=\(\dfrac{-1}{4}\)x^2y^2. \(\dfrac{4}{3}\)xy^3

= (\(\dfrac{-1}{4}\) . \(\dfrac{4}{3}\)). ( x^2.x). ( y^2.y^3)

\(\dfrac{-1}{3}\)x^3y^5

- Bậc: 8

12 tháng 5 2021

Cảm ơn bạn nhìu nha 💗😘💗😘💗😘