Gửi
TNs tao cuồng:c/m \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{3}{2^3}+....+\frac{100}{2^{100}}<2\)Ta có:\(2B=1+\frac{1}{2}+\frac{3}{2^2}+....+\frac{100}{2^{99}}\)\(\Rightarrow2B-B=B=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)(*)c/m \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}<1\)Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)\)\(\Rightarrow A=1-\frac{1}{2^{99}}<1\)do đó \(B=1+A-\frac{100}{2^{100}}\Rightarrow B<2-\frac{100}{2^{100}}<2\left(đpcm\right)\)