K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

6 tháng 10 2018

Mình cũng có câu hỏi giống bạn nè

2 tháng 7 2015

đúng thật là hạng tiểu nhân

lên OLM là để làm toán giúp đỡ mọi người chứ ko phải là vì l i k e hiểu chứ?

còn làm toán chỉ vì l i k e thì cũng chẳng ra gì

chung ta làm toán là vì trước hết có lòng đam mê với môn học này đã

5 tháng 4 2015

a) Vì (n + 2) - (n - 1) = 3 chia hết cho 3 nên n + 2 và n - 1 cùng chia hết cho 3 hoặc cùng không chia hết cho 3.

*) Nếu n + 2 và n - 1 cùng chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) chia hết cho 9.

Mà 12 không chia hết cho 9

\(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9.

*) Nếu n + 2 và n - 1 cùng không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9

Vậy (n - 1)(n + 2) + 12 không chia hết cho 9

b) ab + 1 = cd.(1)

 a + b = c + d \(\Rightarrow\)a = c + d - b.

Thay a vào (1) ta có :

(c + d - b).b + 1 = cd

\(\Rightarrow\)cb + db - b2 + 1 = cd

\(\Rightarrow\) 1                      = cd - cb - db + b2

\(\Rightarrow\) 1                      = (cd - cb) - (db - b2)

\(\Rightarrow\) 1                      = c(d - b) - b(d - b)

\(\Rightarrow\) 1                      = (c - b)(d - b)

\(\Rightarrow\) c - b = d - b

\(\Rightarrow\)c = d (đpcm)

 

 

9 tháng 8 2016

Ta có a, b, c, d thuộc  N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d} \)

\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)

Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1 \)\(\Rightarrow\)  \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)

9 tháng 8 2016

Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d} \Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\) M<2               (2)
 Từ (1) và (2) \(\Rightarrow\)  1<M<2
                      \(\Rightarrow\)   M không có giá trị là số nguyên

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!