Cho tam giac ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE a) Chứng minh tam giác ADE là tam giác cân b)Kẻ BH vuông góc với AD Kẻ CK vuông góc AE Chứng minh rằng BH=CK,AH=AK c)Gọi I là giao điểm của BH và CK.TAm giác IBC là tam giác gì? Vì saoe) Khi góc BAC =60độ và BD=CE=BC hãy tính số đo các góc của tam giác ADE và xác định dạng tam giác IBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)
Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)
c) Ta có: ΔHBD=ΔKCE(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:
\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))
\(\widehat{ABD}=\widehat{ACE}\)
\(BD=CE\) (giả thiết)
\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
b) Vì \(\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)
Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)
Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)
Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)
\(\Rightarrow\Delta BIC\) cân tại \(I\)
c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\) (giả thiết)
\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))
\(AI\) là cạnh chung
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)
\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)
Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)
Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)
∠(ACB) +∠(ACE) =180o(hai góc kề bù)
Suy ra: ∠(ABD) =∠(ACE)
Xét ΔABD và ΔACE, ta có:
AB = AC (gt)
∠(ABD) =∠(ACE) (chứng minh trên)
BD=CE (gt)
Suy ra: ΔABD= ΔACE (c.g.c)
⇒∠D =∠E (hai góc tương ứng)
Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:
∠(BHD) =∠(CKE) = 90º
BD=CE (gt)
∠D =∠E (chứng minh trên)
Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)
Suy ra: BH = CK (hai cạnh tương ứng)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
Bạn tự vẽ hình nha!
a.
Ta có:
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I