K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

a/ \(y'=3x^2+6x+m>0\)

\(y'>0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\9-3m< 0\end{matrix}\right.\Leftrightarrow m>3\)

b/ \(y'=\dfrac{\left(x-m\right)'\left(x+1\right)-\left(x-m\right)\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{x+1-x+m}{\left(x+1\right)^2}=\dfrac{1+m}{\left(x+1\right)^2}>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\1+m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\m>-1\end{matrix}\right.\Leftrightarrow m>-1\)

c/ \(y'=\dfrac{\left(x+2\right)'\left(x-m\right)-\left(x-m\right)'\left(x+2\right)}{\left(x-m\right)^2}=\dfrac{x-m-x-2}{\left(x-m\right)^2}=\dfrac{-m-2}{\left(x-m\right)^2}\)

\(y'>0\Leftrightarrow\left\{{}\begin{matrix}x\ne m\\-m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne x\\m< -2\end{matrix}\right.\)

d/ \(y'=6x^2-2mx+3>0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6>0\\m^2-18< 0\end{matrix}\right.\Leftrightarrow m< \left|\sqrt{18}\right|\)

12 tháng 12 2021

a. \(d//d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne2\end{matrix}\right.\)

b. \(d\cap d_1\Leftrightarrow-2\ne1-m\Leftrightarrow m\ne3\)

c. \(d=d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\)

12 tháng 12 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow m=3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}-2\ne1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ne2\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

12 tháng 12 2021

a: để hai đường thẳng song song thì 1-m=-2

hay m=3

24 tháng 1 2020

P/s: Bài này thì không có chắc tại cũng mới học qua

\(a)\) Hàm số trên nghịch biến

\(\Leftrightarrow3m-1< 0\)

\(\Leftrightarrow3m< 1\)

\(\Leftrightarrow m< \frac{1}{3}\)

Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến

\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)

\(\Leftrightarrow m-2=0\)

\(\Leftrightarrow m=2\)

\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths

Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)

\(\Leftrightarrow-3m+1+m-2=1\)

\(\Leftrightarrow-2m-1=1\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)

\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)

Ta có: \(y=2.1-1\)

\(\Leftrightarrow y=2-1=1\)

\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)

Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)

Ta có: \(\left(3m-1\right)1+m-2=1\)

\(\Leftrightarrow3m-1+m-2=1\)

\(\Leftrightarrow4m-3=1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)

\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)

\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)

\(\Leftrightarrow3m-1\ne-2\)

\(\Leftrightarrow3m\ne3\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)

\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung

\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)

Vậy không tìm được giá trị \(x\)nào TMĐK

25 tháng 12 2023

a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)

=>\(m\ne1\)

c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì

\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)

=>\(m\ne2\)

e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:

2(1-m)+m-2=1

=>2-2m+m-2=1

=>-m=1

=>m=-1

g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0

=>m<1

Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0

=>m>1

h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:

0(1-m)+m-2=3

=>m-2=3

=>m=5

f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:

-2(1-m)+m-2=0

=>-2+2m+m-2=0

=>3m-4=0

=>3m=4

=>\(m=\dfrac{4}{3}\)

25 tháng 12 2023

loading...

loading...

b: Để hàm số y=(1-m)x+m-2 nghịch biến trên R thì 1-m<0

=>m>1

20 tháng 12 2022

a: Thay x=1 và y=3 vào (d), ta đc:

m-1+2=3

=>m+1=3

=>m=2

b: Thay y=0 vào (d), ta đc:

x-1=0

=>x=1

Thay x=1 và y=0 vào (d1), ta được:

2*1+m-1=0

=>m=-1

31 tháng 10 2021

a) Ta có \(y=mx+m-2x=\left(m-2\right)x+m\)

Như vậy để y là hàm số bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

b) Để y là hàm số nghịch biến thì \(m-2< 0\Leftrightarrow m< 2\)

c) Để y là hàm số đồng biến thì \(m-2>0\Leftrightarrow m>2\)

15 tháng 12 2022

a: Để hàm số nghịch biên thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào (d), ta đc:

3(m-2)+m+3=0

=>3m-6+m+3=0

=>4m-3=0

=>m=3/4

c: Tọa độ giao điểm là

2x-1=-x+2 và y=-x+2

=>x=1 và y=1

Thay x=1 và y=1 vào (d), ta được:

m-2+m+3=1

=>2m+1=1

=>m=0

a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:

\(3\left(m-2\right)+m+3=0\)

=>3m-6+m+3=0

=>4m-3=0

=>4m=3

=>\(m=\dfrac{3}{4}\)

c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)

Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:

\(1\left(m-2\right)+m+3=0\)

=>m-2+m+3=0

=>2m+1=0

=>2m=-1

=>\(m=-\dfrac{1}{2}\)

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2