tìm nghiệm của các đa thức sau
a(x)=x3+4x-3(x2+4)
b(x)=x2+4x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
a)h(x)=f(x)-g(x)
=(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)
=2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2
=5x+1
b)h(x)=5x+1=0
=>5x=-1
x=\(\frac{-1}{5}\)
a) \(4x+12=0\)
\(4x=-12\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
b) \(5x-\dfrac{1}{6}=0\)
\(5x=\dfrac{1}{6}\\ x=\dfrac{1}{30}\)
Vậy \(x=\dfrac{1}{30}\) là nghiệm đa thức.
c) \(-6-2x=0\)
\(2x=-6\\ x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức.
d) \(x^2+4x=0\)
\(x\left(x+4\right)=0\)
TH1: \(x=0\)
TH2: \(x+4=0\) hay \(x=-4\)
Vậy các nghiệm của đa thức là \(x=0,x=-4\).
e) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-4=0\), suy ra \(x^2=4\), do đó \(x=2\) hoặc \(x=-2\)
Vậy các nghiệm của đa thức là \(x=0,x=2,x=-2\)
f) \(x^5-27x^2=0\)
\(x^2\left(x^3-27\right)=0\)
Th1: \(x^2=0\) hay \(x=0\)
TH2: \(x^3-27=0\), suy ra \(x^3=27\), hay \(x=3\)
Vậy \(x=0,x=3\) là các nghiệm của đa thức.
\(\text{a)Đặt 4x+12=0}\)
\(\Rightarrow4x=0-12=-12\)
\(\Rightarrow x=\left(-12\right):4=-3\)
\(\text{Vậy đa thức 4x+12 có nghiệm là x=-3}\)
\(\text{b)Đặt 5x-}\dfrac{1}{6}=0\)
\(\Rightarrow5x=0+\dfrac{1}{6}=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:5=\dfrac{1}{30}\)
\(\text{Vậy đa thức 5x-}\dfrac{1}{6}\text{ có nghiệm là }x=\dfrac{1}{30}\)
\(\text{c)Đặt (-6)-2x=0}\)
\(\Rightarrow2x=\left(-6\right)-0=-6\)
\(\Rightarrow2x=\left(-6\right):2=-3\)
\(\text{Vậy đa thức (-6)-2x có nghiệm là x=-3}\)
\(\text{d)Đặt }x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+4=0\Rightarrow x=0-4=-4\end{matrix}\right.\)
\(\text{Vậy đa thức }x^2+4x\text{ có 2 nghiệm là }x=0;x=-4\)
\(\text{e)Đặt }x^3-4x=0\)
\(\Rightarrow x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\Rightarrow x^2=0+4=4\Rightarrow x=\pm2\end{matrix}\right.\)
\(\text{Vậy đa thức }x^3-4x\text{ có 3 nghiệm là }x=0;x=2;x=-2\)
\(\text{f)Đặt }x^5-27x^2=0\)
\(\Rightarrow x^2\left(x^3-27\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x^3-27=0\Rightarrow x^3=0+27=27\Rightarrow x=3\end{matrix}\right.\)
\(\text{Vậy đa thức }x^5-27x^2\text{ có 2 nghiệm là }x=0;x=3\)
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
a) `3x+5 =0`
`3x=-5`
`x=-5/3`
`b) -4x+8=0`
`-4x =-8`
`x=2`
`c) 3x -6=0`
`3x=6`
`x=2`
`d)x^2 +x =0`
`x(x+1) =0`
`=>[(x=0),(x=-1):}`
`e) x^2 -4 =0`
`x^2 =4`
`=> x = +-2`
`f) x^3 -27 =0`
`x^3 =27`
`=> x=3`
`g) 3x^2 +4 =0`
`3x^2 =-4`
`x^2 =-4/3(vô-lí)`
=> Đa thức ko có nghiệm
h) `x^3 -4x =0`
`x(x^2 -4) =0`
`=>[(x=0),(x^2=4 => x=+-2):}`
i) `2x^3 -32x =0`
`2x(x^2 -16)=0`
`=>[(2x=0),(x^2=16):}`
`=>[(x=0),(x=+-4):}`
a) x³y + x - y - 1
= (x³y - y) + (x - 1)
= y(x³ - 1) + (x - 1)
= y(x - 1)(x² + x + 1) + (x - 1)
= (x - 1)[y(x² + x + 1) + 1]
= (x - 1)(x²y + xy + y + 1)
b) x²(x - 2) + 4(2 - x)
= x²(x - 2) - 4(x - 2)
= (x - 2)(x² - 4)
= (x - 2)(x - 2)(x + 2)
= (x - 2)²(x + 2)
c) x³ - x² - 20x
= x(x² - x - 20)
= x(x² + 4x - 5x - 20)
= x[(x² + 4x) - (5x + 20)]
= x[x(x + 4) - 5(x + 4)]
= x(x + 4)(x - 5)
d) (x² + 1)² - (x + 1)²
= (x² + 1 - x - 1)(x² + 1 + x + 1)
= (x² - x)(x² + x + 2)
= x(x - 1)(x² + x + 2)
e) 6x² - 7x + 2
= 6x² - 3x - 4x + 2
= (6x² - 3x) - (4x - 2)
= 3x(2x - 1) - 2(2x - 1)
= (2x - 1)(3x - 2)
f) x⁴ + 8x² + 12
= x⁴ + 2x² + 6x² + 12
= (x⁴ + 2x²) + (6x² + 12)
= x²(x² + 2) + 6(x² + 2)
= (x² + 2)(x² + 6)
g) (x³ + x + 1)(x³ + x) - 2
Đặt u = x³ + x
x³ + x + 1 = u + 1
(u + 1).u - 2
= u² + u - 2
= u² - u + 2u - 2
= (u² - u) + (2u - 2)
= u(u - 1) + 2(u - 1)
= (u - 1)(u + 2)
= (x³ + x - 1)(x³ + x + 2)
= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)
= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]
= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]
= (x³ + x - 1)(x - 1)(x² - x + 2)
h) (x + 1)(x + 2)(x + 3)(x + 4) - 1
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1
= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)
Đặt u = x² + 5x + 4
u + 2 = x² + 5x + 6
(1) u.(u + 2) - 1
= u² + 2u - 1
= u² + 2u + 1 - 2
= (u² + 2u + 1) - 2
= (u + 1)² - 2
= (u + 1 + √2)(u + 1 - √2)
= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)
= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)