Cho(d):y=(2m-3)x-m+2 ( m= 3 2 ) (d'):y=mx+3m-4(m=0) a)Tìm điều kiện của m để(d)//(d') (a=a';b=b') b)Tìm điều kiện của m để(d)cắt(d')(a=a') c)Tìm điều kiện của m để(d) cắt(d')tại 1 điểm trên trục tung(a=a';b=b')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $(d)$ cắt trục tung tại điểm có tung độ $3$, tức là cắt trục tung tại điểm $(0;3)$
$(0;3)\in (d)$
$\Leftrightarrow 3=(m+2).0+2m^2+1$
$\Leftrightarrow 2m^2=2$
$\Leftrightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
Khi $m=1$ thì ta có hàm số $y=3x+3$
Khi $m=-1$ thì ta có hàm số $y=x+3$
Bạn có thể tự vẽ 2 đths này.
b.
Để $(d)$ cắt $(d')$ thì: $m+2\neq 2m+2$
$\Leftrightarrow m\neq 0$
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
a) √(√3 - 2)² + √3
= 2 - √3 + √3
= 2
b) Để (d) và (d') cắt nhau thì:
m + 2 ≠ -2
m ≠ -2 - 2
m ≠ -4
Vậy m ≠ -4 thì (d) cắt (d')
c) Thay tọa độ điểm A(3; -1) vào (d) ta có:
(2m - 3).3 + m = -1
⇔ 6m - 9 + m = -1
⇔ 7m = -1 + 9
⇔ 7m = 8
⇔ m = 8/7 (nhận)
Thay m = 8/7 vào (d) ta có:
(d): y = -5x/7 - 8/7
Vậy hệ số góc của (d) là -5/7
Tọa độ giao của (d1) và (d2) là:
3x=x+2 và y=x+2
=>x=1 và y=3
Thay x=1 và y=3vào (d3), ta được:
m-3+2m+1=3
=>3m-2=3
=>3m=5
=>m=5/3
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)